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Abstract. Let Rα be an irrational rotation of the circle, and code the orbit
of any point x by whether Riα(x) belongs to [0, α) or [α, 1) – this produces a
Sturmian sequence. A point is undetermined at step j if its coding up to time
j does not determine its coding at time j + 1. We prove a pair of results on
the asymptotic frequency of a point being undetermined, for full measure sets
of α and x.

1. Introduction

1.1. Statement of the problem and main results. In this paper we study a
shrinking target problem. Let α ∈ [0, 1), let Rα : [0, 1) → [0, 1) be the rotation
Rα(x) = x+α (mod 1), and let λ denote Lebesgue measure. The following theorem,
due to Weyl, is well known.

Theorem 1.1. Let α /∈ Q. Then for any x, y ∈ [0, 1), and any ε > 0,

lim
N→∞

∑N
i=1 χB(y,ε)(R

i
αx)∑N

i=1 λ(B(y, ε))
= 1.

That is, the asymptotic for the number of visits of the orbit of x to the target set
B(y, ε) by step N is given by the sum of the size of the target over those N steps.

The statement is written here in a slightly unusual way – the denominator is
clearly N2ε (identifying [0, 1) with S1). But it suggests the following sort of prob-
lem. Let {Bi} be a sequence of measurable sets in [0, 1). What can be said about
the behavior of

∑N
i=1 χBi

(Riαx); in particular, is it asymptotic to
∑N
i=1 λ(Bi)?

This is, of course, an enormously varied problem. Cases which have generated
significant interest are shrinking target problems, in which the Bi form a decreasing,
nested chain. By the Borel-Cantelli Lemma, the cases of real interest are when∑∞
i=1 λ(Bi) = ∞. Several results on this problem for rotations and for interval

exchange transformations are contained in [CC17], including the following.

Theorem 1.2. [CC17] For all α satisfying an explicit, full measure diophantine
condition, and for any sequence {ri} such that iri is non-increasing and

∑∞
i=1 ri =

∞, and any y

lim
N→∞

∑N
i=1 χB(y,ri)(R

i
αx)∑N

i=1 2ri
= 1

for almost every x.

In this paper we consider another shrinking target problem for rotations, but
one whose targets arise in a very different way. Rather than being subject to some
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pre-determined analytic constraint (as for the sequence {ri}) the targets arise from
the dynamics of the rotation itself.

Let α be given. Let P = {A0, A1} be the partition of [0, 1) given by A0 =
[0, α), A1 = [α, 1). The bi-infinite sequences (ci(x))i∈Z defined by ci(x) = j if
Riαx ∈ Aj are known as Sturmian sequences (see, e.g. [BFMS02], Ch. 6). These
are sequences of minimal complexity, or with minimal block growth. They were
introduced by Hedlund and Morse [MH40], and have been studied extensively.

For a sequence (c0, c1, . . .) (finite or infinite) of 0’s and 1’s, let Cc0,c1,... = {x :
T ix ∈ Aci for all i}. If x ∈ Cc0,c1..., then (c0, c1, . . .) is a coding for the orbit of x
(or a portion thereof, if the sequence is finite). Let Σ be the set of finite codings
c0, c1, . . . , cn which actually occur, i.e. for which Cc0,...,cn 6= ∅. Let

Vj = {x : x ∈ Cc0,...cj and such that c0, . . . cj , 0 and c0, . . . cj , 1 ∈ Σ}.

This is the set of ‘undetermined’ points at step j, that is, points whose coding up
to step j does not determine the coding at step j + 1.

We want to find asymptotics on how often a point is undetermined; specifically,
we will prove

Theorem A. For almost all x ∈ [0, 1) and almost all α,

lim
n→∞

log
∑n
j=1 χVj

(x)

log
∑n
j=1 λ(Vj)

= 1.

As in [CC17], the full measure condition on α is a diophantine condition involving
the continued fraction expansion of α. It will be stated explicitly in the proof.

To understand why Theorem A constitutes a shrinking target problem, consider
the following. Let Pj = ∨jk=0R

k
αP, the partition generated by P and its first j

translates. For x ∈ X, denote by [[x]]j the atom of x in Pj . The coding c0, . . . cj
determines only the atom [[Rjαx]]j . A point x will belong to Vj if and only if Rjαx
is in [[1−α]]j as the image of this atom under one more rotation contains points in
both A0 and A1. We will denote [[1− α]]j by Uj – these are the shrinking targets
which we are trying to hit. Note that Uj = Rjα(Vj).

The logarithms in Theorem A indicate a weaker asymptotic result than in [CC17].
The stronger version is not true:

Theorem B. For almost all α,

lim
N→∞

∑N
j=1 χVj

(x)∑N
j=1 λ(Vj)

does not exist for almost every x ∈ [0, 1).

Thus, Theorem A is in some sense the best one can hope for in this setting, an in-
teresting contrast with the stronger results obtained for targets of the form B(y, ri).

1.2. Notation and an outline of the paper. The key tool throughout the paper
is the continued fraction expansion of α and its close relationship to the dynamics
of the rotation by α. Throughout, α ∈ (0, 1) is assumed to be irrational. We write

α = [0; a1, a2, a3, . . .]
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for the continued fraction expansion of α. Note that the elements ai of the continued
fraction depend on α; we will at times write ai(α) to emphasize this dependence.
The convergents to α are the rationals pk

qk
. The kth convergent is the best rational

approximation to α with denominator ≤ qk. The qk can be computed by the
recurrence relation qk+1 = ak+1qk + qk−1; q0 = 1, q1 = a1.

We will prove Theorem B first, in Section 2. The almost sure existence of
elements of the continued fraction expansion which are very large in relation to the
preceding elements drives the argument.

Theorem A is proved in Section 3. There we prove a set of looser bounds on∑n
i=1 ai and

∑qn
j=1 χVj

(x) which hold for almost all α and which are sufficient for
the statement of Theorem A.

1.3. Acknowledgements. J. Chaika was supported in part by NSF grants DMS-
1004372, 135500,1452762, the Sloan foundation, a Warnock chair and a Poincaré
chair.

2. Failure of a stronger convergence

Before turning to the proof of Theorem A, we give an argument as to why there
is no stronger theorem along the lines of convergence of

(1)

∑n
j=1 χVj

(x)∑n
j=1 λ(Vj)

.

We begin with a proposition proving the existence of very large elements an for the
continued fraction expansion and use this to show that, for very long stretches
of time certain points are undetermined more often than

∑n
j=1 λ(Vj) predicts.

Namely, we will prove:

Proposition 2.1. For any C ∈ R and almost every α there exist infinitely many
m such that

(2) am > C

m−1∑
i=1

ai.

We need a series of preliminary results to prove this. The following lemma
appears in [Khi97, page 60].

Lemma 2.2. For any n, b1, ..., bn ∈ N we have
1

3b2n
<

λ({α : a1(α) = b1, ..., an(α) = bn})
λ({α : a1(α) = b1, ..., an−1(α) = bn−1})

<
2

b2n
.

From this it is an easy exercise to deduce:

Corollary 2.3.
1

3bn
<

λ({α : a1(α) = b1, ..., an(α) ≥ bn})
λ({α : a1(α) = b1, ..., an−1(α) = bn−1})

<
4

bn
.

Let Wn =

{
α :

n∑
i=1

ai(α) < 10n log n

}
.

Lemma 2.4. λ(Wn) > 1
10 for n > 7.



4 J. CHAIKA AND D. CONSTANTINE

Proof. Let An = {α : ai(α) < n2 for all i ≤ n}. By Corollary 2.3, λ({ai(α) ≥
n2}) < 4

n2 for any i. Thus, λ(Acn) < 4
n .

Consider
n∑
i=1

∫
An

ai(α)dλ. We have,

n∑
i=1

∫
An

ai(α)dλ =

n∑
i=1

n2∑
j=1

j · λ(An ∩ {ai(α) = j})

<

n∑
i=1

n2∑
j=1

j
2

j2

where we have bounded λ(An ∩ {ai(α) = j}) < 2
j2 using Lemma 2.2. The double

sum is less than or equal to 2n(1 + log n2) which is bounded above by 5n log n, for
n > 7.

Using Markov’s inequality, we have

λ(W c
n ∩An) ≤ 1

10n log n

∫
α∈An

n∑
i=1

ai(α) dλ

≤ 1

10n log n
5n log n

≤ 1

2
.

Since λ(An) ≥ 1− 4
n , we conclude that λ(Wn ∩An) is at least 1

10 for n > 7.
�

Remark. The bound in Lemma 2.4 is not optimal, as is easily seen from the proof.
We are only concerned to find some bound away from zero.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Fix C > 0. Corollary 2.3 and the definition of Wm−1
imply that

λ
(
{α : a1(α) = b1, . . . ,am−1(α) = bm−1

and am(α) ≥ 10C(m− 1) log(m− 1)} ∩Wm−1

)
≥ λ({α : a1(α) = b1, . . . , am−1(α) = bm−1} ∩Wm−1)

30C(m− 1) log(m− 1)
.

From this we have that

λ
(
Wm−1 ∩ {α : am(α) ≥ 10C(m− 1) log(m− 1)}

)
≥ λ(Wm−1)

30C(m− 1) log(m− 1)
.

Let Gm = Wm−1∩{α : am ≥ 10C(m−1) log(m−1))}. Notice that α ∈ Gm implies
that am(α) > C

∑m−1
i=1 ai(α). Then

λ(Gm) ≥ λ(Wm−1)

30C(m− 1) log(m− 1)
>

1

300C(m− 1) log(m− 1)
.



QUANTITATIVE SHRINKING TARGETS 5

Using this estimate,
∞∑
m=1

λ(Gm) >

∞∑
m=1

1

300C(m− 1) log(m− 1)
=∞.

To complete the proof we need two lemmas:

Lemma 2.5. Let Ai be measurable subsets of a space with probability measure λ.
If there exists C > 0 such that λ(Ai ∩ Aj) < Cλ(Ai)λ(Aj) and

∑∞
i=1 λ(Ai) = ∞,

then λ
( ∞
∩
N=1

∞
∪
i=N

Ai

)
> 1

4C > 0.

Proof. Let BN,M = ∪Mi=NAi. If
∑M
i=N λ(Ai) <

1
2C then for any j /∈ [N,M ] we have

that

λ(Aj \BN,M ) ≥ λ(Aj)−
M∑
i=N

Cλ(Aj)λ(Ai) >
1

2
λ(Aj).

Because
∑
λ(Ai) =∞, the above implies that λ(BN,∞) ≥ 1

4C for all N . Because we

are in a finite measure space it follows that λ
( ∞
∩
N=1

∞
∪
i=N

Ai

)
= limN→∞ λ (∪∞i=NAi))

and so is at least 1
4C . �

Lemma 2.6. If m > n > 7 then λ(Gm ∩Gn) ≤ 120λ(Gm)λ(Gn).

Proof. By Corollary 2.3, if A1 = {α : ai(α) = bi for 1 ≤ i < m}, A2 = {α : ai(α) =
ci for 1 ≤ i < m} are both subsets of Wm−1 then

(3)
1

12

λ(A2 ∩Gm)

λ(A2)
≤ λ(A1 ∩Gm)

λ(A1)
≤ 12

λ(A2 ∩Gm)

λ(A2)
.

Write Gn = tiAi with each Ai of the form Ai = {α : a`(α) = b`, 1 ≤ ` < m}.
Then Gm ∩Gn = ti(Gm ∩Ai), where we can assume all Ai ⊂Wm−1. Then, using
equation (3),

λ(Gm ∩Gm) =
∑
i

λ(Gm ∩Ai)

≤
∑
i

12
λ(A∗ ∩Gm)

λ(A∗)
λ(Ai)

≤ 12λ(Gn)
λ(A∗ ∩Gm)

λ(A∗)

for an arbitrary A∗ ⊂ Wm−1 of the form above. Since a subcollection of the Ai
form a partition of Wm−1, by restricting the above estimate to that subcollection
we have λ(Gm ∩ Gn) ≤ 12 1

λ(Wm−1)
λ(Gm)λ(Gn). The result follows, using Lemma

2.4. �

Applying these two lemmas we conclude that there is a positive measure set of
α for which am(α) ≥ C

∑m−1
i=1 ai(α) infinitely often. If α is in this set, its image

under the Gauss map is as well, so by the ergodicity of that map the set of such α
in fact has full measure. �
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The following two lemmas on the shrinking targets Uj are also needed to complete
our proof of non-convergence for sums like (1). Recall that Uj = Rjα(Vj) and

Vj = {x : x ∈ Cc0,...cj and such that c0, . . . cj , 0 and c0, . . . cj , 1 ∈ Σ}.

These lemmas are proved using the partial fraction expansion of α. We will denote
by [y] the value modulo 1 of a real number y and by 〈〈y〉〉 the distance from y to
the nearest integer.

Lemma 2.7. Let
rj = max{qk : qk ≤ j}

sj = max{qk : qk+1 ≤ j}

tj = max{T ∈ N : sj + Trj ≤ j}.
Then

Rα(Uj) =
[
[sjα] + tj [rjα], [rjα]

)
or

Rα(Uj) =
[
[rjα], [sjα]− tj(1− [rjα])

)
,

and
λ(Uj) = λ(Vj) = 〈〈rjα〉〉+ 〈〈sjα〉〉 − tj〈〈rjα〉〉.

Remark. Note that if rj = qk, sj = qk−1 and tj < ak+1.

Proof. Note that 〈〈rjα〉〉 is smaller than 〈〈iα〉〉 for all i ≤ j.

Case 1: 0 < [rjα] < 1/2. As the convergents alternate in approximating α from
above and below, 1/2 < [sjα] < 1. The only possible improvement in [rjα] as an
upper bound for Rα(Uj) would come from finding some l with 〈〈lα〉〉 < 〈〈rjα〉〉.
This is not possible for l ≤ j. Thus the upper endpoint of Rα(Uj) is [rjα] as desired.

The lower bound on Rα(Uj) given by [sjα] can be improved only by adding [rjα]
some number of times, as rj is the only integer ≤ j with 〈〈rjα〉〉 < 〈〈sjα〉〉. The
lower endpoint will thus be of the form y = [sjα] + T [rjα] and will be found by
taking T as large as possible such that the sj + Trj rotations required to produce
this point do not exceed j; this number is tj .

We calculate that λ(Uj) = 〈〈rjα〉〉 + (1 − [sjα] − tj [rjα]) using the fact that in
this case 〈〈rjα〉〉 = [rjα]. Since 〈〈sjα〉〉 = 1 − [sjα], this simplifies to the desired
result.

Case 2: 1/2 < [rjα] < 1. Then 0 < [sjα] < 1/2 and the lower endpoint of Rα(Uj)
is [rjα]. As before, the upper endpoint is of the form [sjα]−T (1− [rjα]). The best
such endpoint is found by taking T as large as possible, i.e. equal to tj .

Finally, we calculate again

λ(Uj) =〈〈sjα〉〉 − tj(1− [rjα]) + (1− [rjα])

=〈〈sjα〉〉 − tj〈〈rjα〉〉+ 〈〈rjα〉〉.

�
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For use in the lemma below as well as later in the paper, we fix some notation.
We will adopt interval notation ([n,m), etc.) to denote intervals of integers; context
will make the distinction between these and subsets of the real interval [0, 1) clear.

We let Ii = [qi, qi+1). We let

J ib =

{
[qi, qi−1 + qi) if b = 1,
[qi−1 + (b− 1)qi, qi−1 + bqi) if 1 < b ≤ ai+1.

Let J denote the collection of all the J ib’s. We note that J ib ⊂ Ii and that these
intervals are disjoint.

Further, let J i2 = [qi−1 + qi, qi−1 + 2qi) for all i, whether ai+1 ≥ 2 or not. If
ai+1 = 1, J i2 ⊂ Ii+1 and it equals J i+1

1 , but we note that in any case {J i2}i∈N
consists of pairwise disjoint intervals.

Lemma 2.8. For any J ∈ J , and for all l ∈ J , the sets Vl = R−lα Ul are pairwise
disjoint.

Proof. Fix J ib ∈ J . For l ∈ J ib, Lemma 2.7 tells us that RαUl is the interval
containing 0 bounded by Rqiα (0) and Rqi−1+(b−1)qi

α (0).
Suppose that l > k ∈ J ib. Then Ul = Uk =: U , and R−lα U ∩ R−kα U 6= ∅ if and

only if RαU ∩ Rl−kα (RαU) 6= ∅. For such an intersection to occur, Rl−kα of some
endpoint of RαU must lie in RαU .

We examine the two cases: b = 1 and b > 1.
If b = 1, J ib = [qi, qi−1 + qi), 1 < l − k < qi−1, and the endpoints of RαU are

Rqiα (0) and Rqi−1
α (0). The first time after qi−1 that the orbit of 0 hits U is qi−1 + qi.

But (l − k) + qi−1 < qi−1 + qi and (l − k) + qi < qi−1 + qi, so neither endpoint of
RαU will return to RαU under Rl−kα , proving the desired disjointness.

If b > 1, J ib = [qi + (b − 1)qi, qi−1 + bqi), 1 < l − k < qi, and the endpoints of
RαU are Rqiα (0) and Rqi−1+(b−1)qi

α (0). The first time after qi−1 + (b− 1)qi that the
orbit of 0 hits U is qi−1 + bqi. But (l−k)+qi < qi−1 + bqi since l−k < qi and b ≥ 2
and (l− k) + (qi−1 + (b− 1)qi) < qi−1 + bqi since l− k < qi, so neither endpoint of
RαU will return to RαU under Rl−kα , again proving disjointness.

�

Corollary 2.9. For all m,
qm−1∑
j=1

λ(Vj) <

m∑
i=1

ai.

Proof. In J , there are ai intervals J i−1b contained in Ii−1 = [qi−1, qi). By
Lemma 2.8,

∑
l∈Ji−1

b
λ(Vl) < 1 since the Vl are disjoint over these indices. Thus,∑qi−1

j=qi−1
λ(Vj) < ai and the result follows. �

The following technical tool, a consequence of equidistribution of points under
the rotation Rα and regularity of measures will be used in the proof of Theorem B:

Lemma 2.10. Let A ⊂ [0, 1) have positive measure and fix δ > 0. Suppose we have
families {Xm}m∈N and {Ym}m∈N of subsets of [0, 1) such that

• λ(Xm), λ(Ym) > δ > 0 for all m,
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• For each m, Xm =
⋃Km

k=1R
k
α(Um) and Ym =

⋃Km

k=1R
k
α(Vm) where Um and

Vm are intervals and Km →∞ as m→∞.

Them, for any sufficiently large m, there exists a pair of points x∗ ∈ Xm ∩ A and
y∗ ∈ Ym ∩A with |x∗ − y∗| < δ.

Proof. Choose a positive ε satisfying ε < (.99)λ(A)δ
2+(.99)δ . This choice guarantees

( 1
2 )(.99)(λ(A) − ε)δ > ε. Since A has finite measure, there is a finite, disjoint

union of open intervals B =
⊔n
i=1 Ii such that λ(A∆B) < ε. By the equidistribu-

tion of points under Rα and the fact that Km → ∞, we may pick M > 0 so large
that for all m > M ,

λ(Ii ∩Xm) > .99λ(Ii)δ

λ(Ii ∩ Ym) > .99λ(Ii)δ

for all i = 1, . . . , n, using our lower bound on the measures of Xm and Ym. Further
pick M so large that for m > M , the maximum separation between two adjacent
points in {Rkα0}Km

k=1 is < δ.
Consider the intervals forming Xm and Ym which are contained in Ii. For each

interval U which is a connected component of Xm, let VU be its nearest neighbor to
the right among the connected components of Ym. (Such a neighbor exists for all
but possibly the last such U contained in Ii. We may choose M so large that the
number of Xm intervals in Ii is very large, making this exceptional subinterval’s
contribution to the argument below negligible.) Note that maxx∈U,y∈VU

|x−y| < δ.
If a pair (x∗, y∗) as desired does not exist, then for each pair (U, VU ), at least one
of U, VU contains no points in A. Therefore, λ(Ii \A) > 1

2 (.99)λ(Ii)δ. Thus,

λ(B \A) >

n∑
i=1

1

2
(.99)λ(Ii)δ

=
1

2
(.99)λ(B)δ

>
1

2
(.99)(λ(A)− ε)δ > ε

by our choice of ε. But this contradicts our choice of B, proving the lemma. �

To simplify notation a bit, we set for all integers m:

fm(x) :=

∑qm−1
j=1 χVj (x)∑qm−1
j=1 λ(Vj)

.

Where it exists, we set

f(x) := lim
N→∞

∑N
j=1 χVj

(x)∑N
j=1 λ(Vj)

.

Note that, where it exists, limm→∞ fm(x) = f(x) and f is measurable. In addition,
by Fatou’s Lemma, f will be integrable over the set where it is defined, since∫
[0,1)

fmdλ = 1 for all m. Therefore we can assume f takes only finite values.

We are now ready to prove Theorem B.
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Proof of Theorem B. Fix C > 0 and apply Proposition 2.1 to find a full measure
set of α satisfying equation (2) for infinitely many m. Fix any such m.

For all b ∈ [2, am], let

Wb =
⋃

j∈Jm−1
b

Vj .

Note that by Lemma 2.8, this is a disjoint union, and using Lemma 2.7,

λ(Wb) = qm−1
[
〈〈qm−2α〉〉 − (b− 2)〈〈qm−1α〉〉

]
.

In addition, if x ∈ Wb, then it will belong to exactly one Vj with j ∈ Jm−1b′ for all
b′ ≤ b, and because Vj+qk ⊂ Vj for qk ≤ j ≤ qk+1 − qk,

qm−1∑
j=qm−1

χVj (x) ≥ b for all x ∈Wb.

Choose any ρ ∈ (1/8, 1/4) in such a way that ρam ∈ N (possible since am is very
large), and let Xm = Wρam . We then estimate the measure of Xm below using
standard results on the convergents:

λ(Xm) = qm−1 [〈〈qm−2α〉〉 − (ρam − 1)〈〈qm−1α〉〉]

≥ qm−1
[

1

qm−1 + qm−2
− ρam

1

qm

]
≥ 1

2
− ρamqm−1

qm

≥ 1

2
− ρ.

≥ 1

4
.

Second, choose σ ∈ (1/16, 1/8) so that σam ∈ N and is≥ 2. Let Ym = W1\Wσam .
Then, as any y ∈ Ym will not belong to Vj when j ∈ Jmb for b ≥ σam,

qm−1∑
j=qm−1

χVj
(y) ≤ σam − 1 for all y ∈ Y.

Using Corollary 2.9,

qm−1∑
j=1

χVj
(y) ≤ σam − 1 +

m−1∑
i=1

ai for all y ∈ Y.
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We can also estimate the measure of this set (recalling that am is very large):

λ(Ym) = qm−1
[
(σam − 1)〈〈qm−1α〉〉

]
≥ qm−1(σam − 1)

1

qm + qm−1

≥ 1

2
σ
amqm−1

2qm

=
1

4
σ

amqm−1
amqm−1 + qm−2

≥ 1

4
σ

amqm−1
(am + 1)qm−1

≥ 1

4
σ

1

2
≥ 1

128
.

Estimates here are certainly not precise; the key point is that Xm and Ym have a
positive lower bound on their measures which is independent of m. Let δ = 1

128 .
Using the results above, for all x ∈ Xm and y ∈ Ym,

qm−1∑
j=1

χVj (x)−
qm−1∑
j=1

χVj (y) > ρam − σam + 1−
m−1∑
i=1

ai

> (ρ− σ − 1/C)am.

Finally, using Corollary 2.9,

∣∣fm(x)− fm(y)
∣∣ =

∣∣∣∑qm−1
j=1 χVj (x)−

∑qm−1
j=1 χVj

(y)
∣∣∣∑qm−1

j=1 λ(Vj)
≥ (ρ− σ − 1/C)am∑m

i=1 ai

≥ (ρ− σ − 1/C)am
(1 + 1/C)am

=
(ρ− σ − 1/C)

(1 + 1/C)
.

By choosing C sufficiently large, and since ρ > σ, we have |fm(x)−fm(y)| ≥ D > 0
for all m such that equation (2) holds and all x ∈ Xm, y ∈ Ym.

Let Z = {x : f(x) exists}. Towards a contradiction, assume λ(Z) > 0. Fix
ε < D

3 and < λ(Z)
2 .

Since f is measurable, by Luzin’s Theorem there is a compact set G ⊂ Z with
λ(G) > λ(Z) − ε over which f is (uniformly) continuous. Let δ > 0 be such that
|x− y| < δ and x, y ∈ G imply |f(x)− f(y)| < ε.

Let

ZN =
{
x ∈ Z : for all n ≥ N,

∑n
j=1 χVj

(x)∑n
j=1 λ(Vj)

is within ε of f(x)
}
.

Under our assumption λ(ZN )→ λ(Z) as N →∞. Pick N0 so large that λ(ZN0) >
λ(Z)− ε and, therefore, λ(G ∩ ZN0) > λ(Z)− 2ε > 0 by the choice of ε.

Let m be chosen so large that the following hold:

• qm > N0,
• am satisfies condition (2), and
• {Xm}m∈N and {Ym}m∈N satisfy Lemma 2.10 with A = G ∩ ZN0

.



QUANTITATIVE SHRINKING TARGETS 11

Then we may take x∗ ∈ Xm ∩G ∩ ZN0
and y∗ ∈ Ym ∩G ∩ ZN0

with |x∗ − y∗| < δ.
As x∗, y∗ ∈ ZN0 and qm > N0, |fm(x∗) − f(x∗)| < ε and |fm(y∗) − f(y∗)| < ε.
As both points are in G and |x∗ − y∗| < δ, |f(x∗)− f(y∗)| < ε. We conclude that
|fm(x∗)−fm(y∗)| < 3ε < D. But this contradicts our result above on the minimum
difference between the values of fm at points in Xm and Ym when am satisfies (2).
Therefore there is a set of full measure where the fm do not converge, completing
the proof.

�

3. Proof of Theorem A

Towards Theorem A, we claim the following set of inequalities:
There exists a positive constant C1 such that for almost every α and x ∈ [0, 1),

(4) C1n(log n)3 >

n∑
i=1

ai(α) ≥
qn−1∑
j=1

χVj (x) >
1

4
(n− 2).

The middle inequality follows from almost the same proof as Corollary 2.9. We
prove the other two inequalities in the following sequence of Lemmas. Lemma 3.1
specifies the full measure set of α for which we prove Theorem A.

Lemma 3.1. There exists a positive constant C1 such that for almost every α,
C1n(log n)3 >

∑n
i=1 ai(α) for all n > 7.

Proof. As in the proof of Lemma 2.4, set An = {α : ai(α) < n2 for all i ≤ n}. As

before,
∫
An

n∑
i=1

ai(α)dλ(α) ≤ 5n log n (for n > 7). Note also that λ-a.e. α belongs

to An for all but finitely many n. It follows from Markov’s inequality that

λ

(
{α ∈ An :

n∑
i=1

ai(α) > 10n(log n)2.1}

)
≤ 1

10n(log n)2.1

∫
An

n∑
i=1

ai(α)dλ

≤ 1

2

( 1

log n

)1.1
.

Since almost every α belongs to An for all but finitely many n, almost every α
belongs to A10k for all but finitely many k. Then

λ

α ∈ A10k :

10k∑
i=1

ai(α) > 10k+1(log 10k)2.1


 ≤ ( 1

log 10k

)1.1

.

These measures form a summable sequence, so for a.e. α,

10k∑
i=1

ai(α) ≤ 10k+1
(
log 10k

)2.1
for all but finitely many k.

This implies the Lemma because for large enough k, we have 10k(log 10k)3 ≥
10k+1(log 10k+1)2.1.

�
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We will give a lower bound on
∑qn
j=1 χVj

(x) by bounding below the sum over the
J i2. As we noted above, {J i2}i∈N is a disjoint set of intervals. Let

hi(x) =
∑
j∈Ji

2

χVj (x).

Lemma 3.2. For all i, ∫
[0,1)

hi(x)dλ > 1/2.

Proof. As per Lemma 2.8, over j ∈ J i2, the Vj are disjoint, so hi(x) ∈ {0, 1}. The
length of the interval J i2 is qi, and for j ∈ J i2,

λ(Vj) = 〈〈qi−1α〉〉,
using the description of Rα(Uj) provided by Lemma 2.7. By Theorem 13 in [Khi97],
〈〈qi−1α〉〉 > 1

qi−1+qi
. We may then bound the integral from below by∫

[0,1)

hi(x)dλ >
qi

qi + qi−1
>

qi
2qi

=
1

2
.

�

The following sequence of results prove that the random variables hi(x) are
(approximately) independent.

Lemma 3.3. Let [c, d) ⊂ [0, 1). Let f[c,d)(i, b) = #{[c, d) ∩ ∪l∈Ji
b
R−lα (0)}. Then

λ ([c, d))
∣∣J ib∣∣− 2 ≤ f[c,d)(i, b) ≤ λ ([c, d))

∣∣J ib∣∣+ 2.

Proof. By Theorem 1 in [Kes66], each interval ( j
qm
, j+1
qm

) for j = 0, 1, . . . qm − 1

contains exactly one point of R−lα (0) with 1 ≤ l ≤ qi. Likewise, if a = min J ib, each
Ij := R

−(a−1)
α ( j

qm
, j+1
qm

) contains exactly one point of R−l(0) for l ∈ J ib.
|J ib| = qm where m = i− 1 if b = 1 and m = i if b > 1. At least λ([c, d))|J ib| − 2

of the Ij above are completely contained in [c, d), and at most λ([c, d))|J ib| + 2 of
them intersect [c, d). The result then follows. �

Proposition 3.4. Fix k. For all i such that qi > k and any 1 ≤ b ≤ ai+1,(
λ(Vk)|J ib| − 3

λ(Vk)|J ib|

)
λ(Vk)λ

(
∪l∈Ji

b
Vl

)
≤ λ

Vk ∩ ⋃
l∈Ji

b

Vl


≤
(
λ(Vk)|J ib|+ 3

λ(Vk)|J ib|

)
λ(Vk)λ

(
∪l∈Ji

b
Vl

)
.

Proof. Fix k. Let i be so large that qi > k. By the previous lemma, the interval Vk
is hit by the left endpoints of the Vl between λ(Vk)|J ib| − 2 and λ(Vk)|J ib|+ 2 times.
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As the sets Vl are disjoint and of the same measure over l ∈ J ib, this easily yields

(
λ(Vk)|J ib| − 3

)
λ(Vl∗) ≤ λ

Vk ∩ ⋃
l∈Ji

b

Vl

 ≤ (λ(Vk)|J ib|+ 3
)
λ(Vl∗) for any l∗ ∈ J ib.

Furthermore, for any l∗ ∈ J ib, |J ib|λ(Vl∗) = λ(∪l∈Ji
b
Vl). Translating to an inequality

with multiplicative errors yields(
λ(Vk)|J ib| − 3

λ(Vk)|J ib|

)
λ(Vk)λ

(
∪l∈Ji

b
Vl

)
≤ λ

Vk ∩ ⋃
l∈Ji

b

Vl


≤
(
λ(Vk)|J ib|+ 3

λ(Vk)|J ib|

)
λ(Vk)λ

(
∪l∈Ji

b
Vl

)
.

�

Proposition 3.4 asserts near independence of the events Vk and ∪l∈Ji
b
Vl. Using it

for all k ∈ Jjb′ where j < i (which guarantees k < qi) we get the following corollary.
It relates to calculating the correlation between a point being undetermined in the
intervals Jjb′ and J

i
b.

Corollary 3.5. For any k ∈ J ib′ , and J ib′ , J
j
b disjoint, j > i,(

λ(Vk)|Jjb | − 3

λ(Vk)|Jjb |

)
λ
(
∪k∈Ji

b′
Vk

)
λ
(
∪l∈Jj

b
Vl

)

≤ λ

 ⋃
k∈Ji

b′

Vk ∩
⋃
l∈Jj

b

Vl


≤

(
λ(Vk)|Jjb |+ 3

λ(Vk)|Jjb |

)
λ
(
∪k∈Ji

b′
Vk

)
λ
(
∪l∈Jj

b
Vl

)
.

Proof. This follows from summing Proposition 3.4’s inequalities over the disjoint
sets Vk for k ∈ J ib′ . (The desire to compute this sum explains our preference for the
formulation in terms of multiplicative bounds above.) �

Proposition 3.6. For j > i(
1− 3qi+1

qj

)∫
hidλ

∫
hjdλ ≤

∫
hihjdλ ≤

(
1 +

3qi+1

qj

)∫
hidλ

∫
hjdλ.

Proof. First, ∫
hi(x)hj(x)dλ =

∫ ∑
l∈Ji

2

χVl
(x)

∑
l∈Jj

2

χVl
(x)

 dλ.
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As over J i2 and over Jj2 the sets Vl are disjoint, the integrand of the above has value
0 or 1 according to whether x ∈

(
∪l∈Ji

2
Vl

)
∩
(
∪l∈Jj

2
Vl

)
. Thus,

∫
hihjdλ = λ

⋃
l∈Ji

2

Vl ∩
⋃
l∈Jj

2

Vl

 .

By Corollary 3.5, for l ∈ J i2 we get

(
λ(Vl)|Jj2 | − 3

λ(Vl)|Jj2 |

)
λ
(
∪l∈Ji

2
Vl

)
λ
(
∪l∈Jj

2
Vl

)

≤ λ

⋃
l∈Ji

2

Vl ∩
⋃
l∈Jj

2

Vl


≤

(
λ(Vl)|Jj2 |+ 3

λ(Vl)|Jj2 |

)
λ
(
∪l∈Ji

2
Vl

)
λ
(
∪l∈Jj

2
Vl

)
To assess the value of the terms

(
1± 3

λ(Vl)|Jj
2 |

)
consider an arbitrary l ∈ J i2.

As Ul = RαVl, using the description of RαUl given by Proposition 2.7 and [Khi97,
Theorem 13], λ(Vl) > 〈〈qiα〉〉 > 1

qi−1+qi
≥ 1

qi+1
. From its description, |Jj2 | = qj .

Using these two bounds, 3

λ(Vl)|Jj
2 |
< 3qi+1

qj
.

Returning to our inequalities for
∫
hihj , as the Vl are disjoint over Jj2 or J i2 we

can translate back into integrals as so:(
1− 3qi+1

qj

)∫ ∑
l∈Ji

2

χVl
(x)dλ

∫ ∑
l∈Jj

2

χVl
(x)dλ

≤
∫
hihjdλ ≤(

1 +
3qi+1

qj

)∫ ∑
l∈Ji

2

χVl
(x)dλ

∫ ∑
l∈Jj

2

χVl
(x)dλ.

These are the desired bounds on
∫
hihjdλ. �

The independence result we want is the following.

Proposition 3.7. There exist constants C, b > 0 such that∣∣∣∣∣
∫
[0,1)

hi(x)hj(x)dλ−
∫
[0,1)

hi(x)dλ

∫
[0,1)

hj(x)dλ

∣∣∣∣∣ < Ce−b|i−j|.

Proof. We may assume j > i. Using Proposition 3.6, we need to show that the
expression

3qi+1

qj

∫
hidλ

∫
hjdλ

decays exponentially in |i− j|. A clear upper bound on each of
∫
hidλ,

∫
hjdλ is 1.

As qk+2 > 2qk,
qi+1

qj
decays exponentially in |i− j|, as desired. �
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We can apply this approximate independence to prove the remaining inequality
in equation (4). Let h̃i(x) = hi(x)−

∫
hi(x)dλ, and note that h̃i(x) ∈ (−1, 1). Let

s̃n(x) =
∑n
i=1 h̃i(x).

Proposition 3.8. For almost every x ∈ S1, for sufficiently large n,
qn−1∑
j=1

χVj
(x) >

1

4
(n− 2).

Proof. First, for all x ∈ [0, 1),
∑qn−1
j=1 χVj (x) ≥

∑n−2
i=1 hi(x) as j ∈ J i2 implies

j < qi+2.
Consider

∑n−2
i=1

∫
hi(x)dλ. By Lemma 3.2 this is bounded below by 1

2 (n− 2); it
is bounded above by n as hi takes only 1 or 0 as a value. Applying Chebyshev’s
inequality to s̃n yields (for any ε > 0)

λ ({x : |s̃n−2(x)| > ε(n− 2)}) <
∫
s̃2n−2(x)dλ

ε2(n− 2)2

=

∑n−2
i=1

∫
h̃2i (x)dλ+ 2

∑
i<j

∫
h̃i(x)h̃j(x)dλ

ε2(n− 2)2

<
D

ε2(n− 2)
.

For the last inequality we have used the facts that h̃i(x) ∈ (−1, 1) so∑n−2
i=1

∫
h̃2i (x)dλ < n−2 and that for some positive constant D, 2

∑
i<j

∫
h̃ih̃jdλ <

(D − 1)(n− 2) by Proposition 3.7.
We restrict our attention to the subsequence of times {(n− 2)2}, obtaining

λ({x : |s̃(n−2)2(x)| > ε(n− 2)2}) < D

ε2(n− 2)2
.

Summing the term on the right-hand side of the above inequality over all n yields
a convergent series so by the Borel-Cantelli Lemma, for almost every x ∈ [0, 1),

s̃(n−2)2(x)

(n− 2)2
→ 0 as n→∞.

Consider now the intervals [(n − 2)2, (n − 1)2). As h̃i(x) ∈ (−1, 1), for k ∈
[(n− 2)2, (n− 1)2),

|s̃(n−2)2(x)− s̃k(x)| < 2(n− 2) + 1

so
|s̃k(x)|
k

<
|s̃(n−2)2(x)|+ 2(n− 2) + 1

k
≤
|s̃(n−2)2(x)|+ 2(n− 2) + 1

(n− 2)2
→ 0

as k →∞.
We have now that for almost all x,∑n−2

i=1 hi(x)−
∫
hi(x)dλ

n− 2
→ 0.
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As
∑n−2
i=1

∫
hi(x)dλ ∈ ( 1

2 (n − 2), (n − 2)), for sufficiently large n,
∑n−2
i=1 hi(x) >

1
4 (n− 2) as desired. �

We now prove a similar series of inequalities for
∑qn
j=1 λ(Vj), namely:

(5) C1n(log n)3 >

n∑
i=1

ai(α) >

qn−1∑
j=1

λ(Vj) >
1

2
(n− 2).

The left-most inequality is Lemma 3.1 and the next is Corollary 2.9. It remains
only to prove:

Lemma 3.9. For all α,
qn−1∑
j=1

λ(Vj) >
1

2
(n− 2).

Proof. This follows easily from Lemma 3.2 after noting that
qn−1∑
j=1

λ(Vj) >

n−2∑
i=1

∑
j∈Ji

2

λ(Vj) =

n−2∑
i=1

∫
[0,1)

hi(x)dλ.

�

The inequalities collected above enable us to prove the main theorem:

Proof of Theorem A. Consider the full measure set of α satisfying Lemma 3.1. Sup-
pose n ∈ [qm, qm+1). Then we have the following for almost every x:

1

4
(m− 2) <

qm−1∑
j=1

χVj
(x) ≤

n∑
j=1

χVj
(x) ≤

qm+1∑
j=1

χVj
(x) < C1(m+ 1)(log(m+ 1))3

1

2
(m− 2) <

qm−1∑
j=1

λ(Vj) ≤
n∑
j=1

λ(Vj) ≤
qm+1∑
j=1

λ(Vj) < C1(m+ 1)(log(m+ 1))3

Taking logs and forming the relevant quotient, we see that the log(m − 2) and
log(m + 1) terms dominate the log(constant) and log(log(−)) terms. As log(m)

log(m+1)

and log(m+1)
log(m−2) → 1, the result follows.

�
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