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Abstract

We survey results on compact Clifford–Klein forms of homogeneous
spaces, with a focus on recent contributions and organized around ap-
proaches via topology, geometry and dynamics. In addition, we survey
results on moduli spaces of compact forms.
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1 Introduction

1.1 The basic questions, and a conjecture

This survey will be devoted to two questions. The first, the existence ques-
tion, has been studied fairly extensively. The second, the deformation ques-
tion, has so far received less attention, though there have been several recent
developments.

Question 1.1 (The existence question for compact Clifford–Klein forms). Let
H\G be a homogeneous space of a noncompact Lie group G. Does there
exist a discrete subgroup Γ in G such that H\G/Γ is a compact manifold
locally modeled on H\G?

A compact manifold H\G/Γ is generally called a compact Clifford–Klein
form. The alternate terminology ‘H\G has a tessellation’ has been suggested
by the series of papers [OW00, OW02, IWM04]. This terminology may be
preferable in that it avoids the confusion with compact forms of Lie groups,
but it is not standard.

The ultimate goal is to understand all pairs (G,H) which have compact
Clifford–Klein forms. There is a Goldilocks tension at play in looking for Γ:
it must not be too big, so that it can act freely and properly discontinuously
on H\G; it must not be too small or else H\G/Γ will not be compact. In
addition, Γ must be ‘well-positioned’ in G relative to H, as we will see most
clearly in the approaches to the problem in Section 3.2 below.

For all of the results we will outline, some sort of restriction must be
placed on G and H. It is very common to assume G semisimple, or even
simple, and that H is reductive in G, ie. its adjoint action on the Lie algebra
of G is reducible. These are the main cases of geometric interest and will be
the focus of this survey. As exceptions to this rule, however, I would note:
the flat Minkowski spacetime Rn,1 = O(n, 1)\(O(n, 1)nRn+1) and the affine
space Rn = GLn(R)\(GLn(R)nRn), especially as studied in relation to the
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Auslander Conjecture (see [CDGM03] and [Abe01] for surveys); and the
‘tangential symmetric spaces,’ studied in [KY05] by Kobayahi and Yoshino.

The study of such forms of Riemannian homogeneous spaces goes back
to the work of Borel on discrete subgroups of Lie groups (see [Bor63]). As
we will soon see, however, the main focus of Question 1.1 is now pseudo-
Riemannian homogeneous spaces, i.e. those for which H is noncompact.
The first work on such spaces was that of Calabi and Markus [CM62]. Since
the late ’80’s, the driving force behind considering the problem for reductive,
non-Riemannian homogeneous spaces – our specific concern here – has been
Toshiyuki Kobayashi (see the many references below), and in subsequent
years a wide variety of mathematicians have contributed to the field.

Let us note two related problems. First, one can ask which homogeneous
spaces have finite-volume Clifford–Klein forms. A few of the results below
are general enough to deal with this situation, but to the author’s knowledge
nothing specific to the finite-volume case has been done. It would be quite
surprising to find a homogeneous space possessing a finite-volume form but
no compact one.

Second, one can also ask whether a compact (G,X)-manifold where X =
H\G exists. Such a structure consists of the following: a developing map
dev : M̃ → X and a holonomy homomorphism hol : π1(M) → G such that
the developing map is a local diffeomorphism and equivariant with respect
to the holonomy map. (G,X)-structures will be used in Section 6.2.1 below,
and are treated in more detail there. A compact (G,X)-manifold need not
be of the form H\G/Γ. The author knows of two results flexible enough
to treat this more general existence question ([BL92] and [LMZ95], Sections
4.1 and 5.1 below), but again, most cases are open.

Naturally, the second question we survey is the uniqueness counterpart
of the first:

Question 1.2 (The deformation question for compact forms). For homoge-
neous spaces possessing a compact form, can one describe the space of all
compact forms? Specifically, can compact forms be deformed locally?

Work on this question is, generally speaking, more recent, and includes
some very recent results which I will survey in Section 6.

There is one central conjecture in this field, having to do with the fol-
lowing algebraic construction of compact forms. Let us suppose that L and
H are Lie subgroups of G such that:

• HL = G

• H ∩ L is compact

• Λ is a uniform lattice in L
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Then a compact form of H\G may be formed by taking

H\G/Λ ∼= (H ∩ L)\L/Λ.

The requirement above that HL = G can be loosened – we need only that
HL is cocompact in G. These algebraically-constructed compact forms will
be called standard forms. Kobayashi conjectures the following:

Conjecture 1.3 (Kobayashi, [KY05] Conj. 3.3.10). If H\G possesses a
compact form, for G and H reductive, it possesses a standard form.

The reader should note that Kobayashi’s conjecture is not simply ‘all com-
pact forms are standard.’ We will see in Section 6 that the answer to the
deformation question is sometimes yes, and that not all the forms are stan-
dard. The first such results were due to Goldman, Ghys and Kobayashi
([Gol85], [Ghy95], [Kob98]). In addition, there are nonstandard forms which
are not deformations of standard ones, first obtained by Salein ([Sal00], see
Section 6.2.2).

Remark 1.4. I would like to note here a result that bears on the construction
mentioned above. In [Con11] Lemma 9.2.2, we prove that when G is simple
and H is contained in a maximal proper parabolic subgroup of G, then the
condition HL = G forces L to be semisimple. Assuming H reductive, one
can then apply the work of Onǐsčik in [Oni69], where all decompositions of
simple G as products of reductive subgroups are classified.1 Most examples
in this classification do not satisfy H∩L compact; the remainder of Onǐsčik’s
list provides a useful catalogue of spaces potentially having compact forms.

We will survey below some of the results that give evidence for Con-
jecture 1.3. However, as the reader will gather from the wide variety of
approaches to the problem (each of which has its own particular realm of
usefulness), there is no unified approach at the moment.

1.2 Motivation and special examples

We motivate the existence question with a special case. Let H be a compact
subgroup of G. Then it is easy to see that finding a suitable Γ reduces to
finding a uniform lattice in G. For G semisimple, Borel found such lattices
(see [Bor63]). These examples include the Riemannian symmetric spaces,
spaces of great geometric interest.

As we allow H noncompact, we can still form symmetric spaces by taking
H to be an open subgroup of the points of G fixed by some involution. In
general, however, these will be only pseudo-Riemannian symmetric spaces
(see Prop 1.7). The main motivation for the existence question is to under-
stand these symmetric spaces as we do the Riemannian ones, although they

1Onǐsčik’s work assumes that H is reductive but not that H is contained in a proper
parabolic subgroup.
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are, generally speaking, much harder to study. The main difficulty is that
H\G/Γ, with both H and Γ noncompact, usually does not inherit the main
structures present on G; a good example is a right-invariant Riemannian
metric. Hence the need for the many new techniques developed below.

To motivate the deformation question, consider the special case G =
SL2(R), H = SO(2). Here the deformation spaces of compact forms (up to
conjugation of Γ in G) are Teichmüller spaces of marked hyperbolic struc-
tures on closed, genus g ≥ 2 surfaces. Some of the deformation results we
will examine below are actually on a similar problem, examining again con-
stant curvature -1 structures, but this time on three-dimensional Lorentzian
manifolds.

A few special examples are worth mentioning. The first example one
might consider – simply because of the straight-forward structure of the
groups involved – is SLk(R)\SLn(R), where SLk(R) is embedded in the upper
left-hand corner of SLn(R). This can be generalized by embedding SLk(R)
via other representations. Amazingly, the existence question for these spaces
is not entirely solved, although all work so far gives a negative answer to that
question. A variety of results deal with small-dimensional versions of this
problem; the main results for general dimension follow from the topological
approaches discussed in Section 3 and the dynamical approaches in Section
5.

The second example is geometrically motivated, and predates the exam-
ple above. Call a pseudo-Riemannian manifold M with signature (p, q) a
(p, q)-space form if it has constant sectional curvature κ. We are familiar,
of course, with the Riemannian (p, 0)-space forms; (p, 1)-space forms are the
Lorentzian case (see, e.g., [Wol11]). The first motivation for the existence
problem was Calabi and Markus’s study of (3, 1)-space forms as possible
models for space-time ([CM62], see Sec. 3.1). If we assume as well that M
is geodesically complete, then M must be a quotient of one of the following
spaces (see [Wol11]):

• κ < 0: Hp,q := O(p, q)\O(p, q + 1) for q ≥ 2, or Õ(p, 1)\Õ(p, 2)

• κ = 0: Rp,q := O(p, q)\O(p, q) nRp+q

• κ > 0: Sp,q := O(p, q)\O(p+ 1, q) for p ≥ 2, or Õ(1, q)\Õ(2, q).

Kobayashi has the following conjecture about pseudo-Riemannian space
forms:

Conjecture 1.5 (Kobayashi, [Kob01], Conj 2.6). There exists a compact
space form with signature (p, q) (p, q 6= 0) and sectional curvature κ if and
only if:
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• κ < 0 and (p, q) belongs to
p 1 3 7

q 2N 4N 8

• κ = 0 and (p, q) is arbitrary

• κ > 0 and (p, q) belongs to
p 2N 4N 8

q 1 3 7

The ‘if’ part of this conjecture is proven (see [KY05] and references therein);
the ‘only if’ part is open, though we will see several results below that address
portions of it. The κ = 0 portion is trivial; the κ < 0 and κ > 0 portions
are equivalent as Sp,q ' Hq,p.

As preparation for a few of the techniques below, let me record a defi-
nition of an important class of homogeneous spaces and a fact about their
pseudo-Riemannian structure.

Definition 1.6. The homogeneous space H\G is of reductive type if G is
reductive, H is a closed subgroup with finitely many connected components
and H is stable under a Cartan involution2 of G.

Note that H\G of reductive type implies that H is reductive; the converse
holds if H is semisimple or algebraic.

Proposition 1.7 (See, e.g., [KY05] Prop 3.2.7). Let H\G be a homoge-
neous space of reductive type. Then H\G has a right-G-invariant pseudo-
Riemannian metric of signature

(d(G)− d(H), dim(G)− dim(H)− d(G) + d(H))

induced by the Killing form on g. Here d(−) is the dimension of the Rie-
mannian symmetric space associated to the Lie group.

1.3 Organization and aims of the survey

I would be very remiss not to mention that there are already several ex-
cellent surveys of the existence question for compact forms. In particu-
lar, let me note the survey “Quelques résultats récents sur les espaces lo-
calment homogènes compacts” [Lab96] by Labourie, the survey “Compact
Clifford–Klein forms of symmetric spaces – revisited” [KY05] by Kobayashi
and Yoshino, and the introduction to Kassel’s thesis [Kas]. Kobayashi and
Yoshino’s survey in particular is very extensive and for the results related to
Kobayashi’s large amount of work on the problem, no better survey could
be desired.

2Recall that a Cartan involution of the Lie algebra g is an involution θ such that
−κ(X, θY ) is positive definite as bilinear form in X and Y , where κ is the Killing form.
It plays a central role in the theory of semisimple and reductive Lie groups. H is stable
under this involution if its Lie algebra is stable.
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It is not my intention to replace any of these excellent papers, but rather
to supplement them. In particular I would like to point out the following
features that I hope will make this survey a serviceable supplement:

• We survey a few results (eg. [Con11], [Sal00], [Kas12], [GW12]) which
have been published since the most recent survey [KY05], or were not
included there.

• This survey gives the first complete presentation of the representation-
theoretic approaches to the problem (see Section 4.2).

• We will treat the extensive work on the problem by Kobayashi and his
collaborators lightly; [KY05] is still the best resource on this work.

• We provide the first survey of material on the deformation question,
much of which has been developed recently (Section 6).

As this survey is being written as part of the proceedings for the confer-
ence Geometry, Topology and Dynamics in Negative Curvature (Bangalore,
2010), I have organized the presentation around the themes of the confer-
ence. In Section 3 we survey approaches to the existence question that can
be broadly classed as topological. In Section 4 we survey geometric ap-
proaches and in Section 5 we survey approaches primarily using dynamics.
The reader will find, of course, that many of our results straddle these cate-
gories. Finally, in Section 6 we survey results on the deformation question.

1.4 Thanks

I would like to thank the organizers of the conference Geometry, Topology
and Dynamics in Negative Curvature (Bangalore, 2010) for inviting me to
speak at that excellent event, and for inviting me to contribute this survey to
the proceedings. I would especially like to thank Fanny Kassel for reading
an earlier draft of this survey and providing numerous and very helpful
comments and suggestions, and an unnamed referee for a very careful reading
of an earlier draft and helpful suggestions too numerous to detail. Remaining
mistakes are my own.

2 Notation

The following notation will be fixed throughout the survey for consistency.
Notation which only makes an appearance relating to one result will con-
form, as much as possible, to the authors’ original notation, for ease of
reference.

• G and H will be (real) Lie groups; Γ will be a discrete subgroup of G
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• H\G/Γ will be a compact Clifford–Klein form of the homogeneous
space H\G.

• ZG(H) will be the centralizer of H in G; often J < ZG(H) will be a
particular subgroup of this centralizer, usually a semisimple group.

• German letters (g, j, etc.) denote the Lie algebras associated to the
corresponding Lie groups.

• For a Lie group G, let d(G) denote the dimension of the (Riemannian)
symmetric space associated to G.

3 Topology

In basic formulation, the compact forms question is a topological one, and
the first approach to it is via the algebra and topology of Lie groups. Some
of what is surveyed in this section is not strictly topological, but there is a
significant contrast with the approaches found in Section 4, where stronger
geometric structures are used.

The topological approach has a long history, with the most extensive
contribution being provided by Toshiyuki Kobayashi. In fact, no better
survey of the topological approached to this problem can be found than his
survey [KY05] with Yoshino. Below I will present an abbreviated look at
the basic features of the topological approaches; greater detail can be found
in Kobayashi and Yoshino’s survey.

3.1 Rank restrictions – the Calabi–Markus phenomenon

Several of the main nonexistence results for compact forms utilize restric-
tions on the real ranks of the Lie groups G and H. In fact, the first nonex-
istence result is in this vein – the so-called Calabi–Markus phenomenon.
In [CM62], Calabi and Markus investigate what they call relativistic space
forms, that is, complete Lorentz manifolds with constant curvature. Of
these there are three models, the Minkowski plane Rn,1 with curvature zero,
the de Sitter space dSn = Sn−1,1 with curvature +1, and the anti-de Sitter
space AdSn = Hn−1,1 with curvature −1 (take n ≥ 2 here). The de Sit-
ter space is formed by taking the standard Minkowski form on Rn,1,namely
ds2 = −x21 + x22 + · · ·+ x2n+1 and restricting this form to the quadric hyper-
surface −x21 + x22 + · · · + x2n+1 = 1. The group G = SO(1, n) preserves this
hypersurface and the stabilizer of the point (0, 1, 0, . . . , 0) is SO(1, n− 1) so
dSn = SO(1, n − 1)\SO(1, n). Topologically, dSn is the product of the real
line with a sphere, hence noncompact.

Calabi and Markus prove the following, of which the nonexistence of a
compact (or finite-volume) form is a clear corollary.
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Theorem 3.1 (Calabi–Markus, [CM62] Thm 1). Any Γ which acts properly
discontinuously by isometries on dSn = SO(1, n− 1)\SO(1, n) is finite.

Idea of proof. Consider the equatorial sphere in dSn described by setting
x1 = 0. It is an easy exercise using the symmetry about the origin to show
that the image of this sphere under any isometry intersects the original
sphere. As this sphere is compact, these intersections cannot occur for
infinitely many elements of Γ without violating proper discontinuity of the
action.

The general idea here – that SO(1, n− 1) is ‘large enough’ with respect
to SO(1, n) to leave no room for an infinite Γ – is codified more generally in
the following criterion.

Theorem 3.2 (Calabi–Markus phenomenon, see [CM62], [Wol62], [Kob89]).
If the R-rank of H is the same as the R-rank of G, only a finite Γ can act
properly discontinuously on H\G. Thus H\G admits a compact form only
if it is already compact.

3.2 Generalizations of Calabi–Markus

The most comprehensive approach to this situation has been provided by
Kobayashi and Benoist (see [Kob89], [Kob92b], [Kob96a], [Kob96b] and
[Ben94], [Ben96]). Benoist and Kobayashi formulate a very general criterion
for proper action which suppresses even the group structures of H and Γ
and treats them symmetrically.

Definition 3.3 ([Kob96b], Defn 1.11.1; [Ben96], §3.1). Let A and B be
subsets of G.

• The pair (A,B) is transversal, denoted At̄B, if A ∩ SBS is relatively
compact for any compact S ⊂ G.3

• The pair (A,B) is similar, denoted A ∼ B, if there exists compact S
in G such that A ⊂ SBS and B ⊂ SAS.

Note that Γ acts properly on H\G if and only if Γt̄H, that transversality is
preserved by similarity, and that if H ∼ G, then Ht̄Γ only if Γ is compact.
For G ∼= Rn, and A and B closed cones in G, the definitions are particularly
simple: similarity corresponds to equality and transversality corresponds to
A ∩B = {0}. To exploit these facts, recall the concept of Cartan decompo-
sition for a reductive Lie group: G = KAK, where K is a maximal compact
subgroup and A is a Cartan subgroup. Let π : G → a/W be the associ-
ated Cartan projection (W is the Weyl group); it is continuous, surjective
and proper. Write a(S) = π(S)W for any subset S ⊂ G. The considera-
tions above indicate that properness can be checked by examining a(H) and

3Benoist calls the pair (A,B) ‘G-proper.’
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a(Γ). Specifically, Ht̄Γ (resp. H ∼ Γ) in G if and only if a(H)t̄a(Γ) (resp.
a(H) ∼ a(Γ)). Another way to state the properness condition is that Γ acts
properly on H\G if and only if a(Γ) goes away from a(H) at infinity, i.e. for
any compact subset C of a, one has that a(Γ)∩ (a(H) +C) is compact. The
result is the following theorem, which strengthens Theorem 3.2 by providing
a converse:

Theorem 3.4 (General Calabi–Markus phenomenon). Let H\G be of re-
ductive type. Then the following are equivalent:

• R-rank(H) = R-rank(G)

• Only a finite Γ acts properly discontinuously on H\G.

In [Ben96], Benoist develops a further use of the Cartan projection to
put a restriction on any properly acting Γ. Assume H is stable under the
Cartan involution defining K. Define BW = {aW ∈ a/W : aW = −aW}.

Theorem 3.5 (Benoist, [Ben96] §7.5). Let H\G be of reductive type and
let H be stable under the Cartan involution defining K as above. Only a
virtually abelian Γ may act properly discontinuously on H\G if and only if
Bw ⊂ a(H). In particular, if H\G is noncompact and Bw ⊂ a(H), then
H\G has no compact form.

Table 1 lists a few spaces to which this theorem applies.

G H conditions

SLn(R) (SLk(R)× SLn−k(R)) 1 ≤ k ≤ n, and k(n− k) even

SL2n(R) Sp(n,R) n ≥ 1

SL2n(R) SO(n, n) n ≥ 1

SL2n+1(R) SO(n, n+ 1) n ≥ 1

SO(n+ 1,m) SO(n,m) n ≥ m, n even

G simple, complex;
HC the fixed points of a

GC HC complex involution of GC;
except

(SO(4n− k,C)× SO(k,C))\SO(4n,C)
for n ≥ 2, and k odd.

Table 1: Some homogeneous spaces H\G without compact Clifford–Klein
forms

Note that the first example in Table 1, with k = 1, is SLn−1(R)\SLn(R)
when n is odd.4 When n is even, Benoist constructs non-virtually abelian

4As reported in [IWM04], the case SL2(R)\SL3(R), was also proven by Margulis, though
never published.
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groups which act properly discontinuously (though not cocompactly) on
SLn−1(R)\SLn(R); specifically, he constructs nonabelian, free, Schottky groups.5

The case for n even is an interesting open question; one expects that no com-
pact form of this space exists.

We will close this subsection with a mention of some of the work of
Kassel on the problem. She works on homogeneous spaces H\G with R-
rank(H) = R-rank(G)−1, i.e. examples just outside the reach of the Calabi–
Markus phenomenon. In these cases (and under some natural assumptions
on G and H) she is able to describe the Cartan projection of any Γ acting
properly discontinuously on H\G ([Kas08] Thm 1.1). Two applications of
the main result in [Kas08] are a structure theorem for properly discontinuous
Γ for diag(G′)\(G′ × G′) ([Kas08] Theorem 1.3; diag refers throughout to
the diagonal embedding), and a simplified proof of Benoist’s nonexistence
result for SLn−1(R)\SLn(R) for n odd. Kassel also extends this work to Lie
groups over local fields. We will return to some of Kassel’s further work
along this line in Section 6.2.2.

3.3 Results in small dimensions

There are scattered results on the existence question when we restrict to
small dimension. I would like to mention here the case SL2(K)\SL3(K)
where K is any of the real numbers, the complex numbers or the quternions.
Benoist’s work covers these cases; earlier, Kobayashi dealt with the latter
two cases (see [Kob92a]). Oh and Witte-Morris generalized Benoist’s work
to homogeneous spaces of SL3(R) with H nonreductive in [OW02], proving
that only the obvious examples have compact forms:

Theorem 3.6 (Oh–Witte-Morris, [OW02] Prop 1.10). Let H be a closed,
connected subgroup of SL3(K). If H\SL3(K) has a compact form, either H
or H\SL3(K) is compact.

There is a nice treatment of this problem and a simplification of Oh and
Witte-Morris’s proof in Section 6 of [IWM04].

3.4 A dimension criterion

In the approaches to the problem just detailed, only the properness of the
action of Γ is considered. In [Kob89], Kobayashi uses the ideas of Defini-
tion 3.3 to examine conditions under which a compact form does exist. He
produces the following theorem.

Theorem 3.7 ([Kob89], Thm 4.7). Let G be a reductive linear group; H
and L subgroups having finitely many components and stable under some
Cartan involution θ. If

5Benoist’s construction works for all reductive H\G admitting proper actions by non-
virtually abelian Γ; he characterizes these in [Ben96].
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G H L

SU(2, 2n) Sp(1, n) U(1, 2n)

SO(2, 2n) U(1, n) SO(1, 2n)

SO(4, 4n) SO(3, 4n) Sp(1, n)

SO(4, 4) SO(4, 1)× SO(3) Spin(4, 3)

SO(4, 3) SO(3, 1)× SO(2) G2(2)

SO(8, 8) SO(7, 8) Spin(1, 8)

SO(8,C) SO(7,C) Spin(1, 7)

SO(8,C) SO(7, 1) Spin(7,C)

SO(8,C) SO(7,C) Spin(1, 7)

SO∗(8) U(3, 1) Spin(1, 6)

SO∗(8) SO∗(6)× SO∗(2) Spin(1, 6)

Table 2: Some homogeneous spaces H\G with compact Clifford–Klein forms

• a(H) ∩ a(L) = {0} and

• d(H) + d(L) = d(G),

then both H\G and G/L admit compact forms.

The first condition of this theorem arises from the properness issues dis-
cussed above. The second is a consideration for compactness. Its necessity
follows from the following Proposition.

Proposition 3.8. Let G be reductive and linear with connected closed sub-
groups Ht̄L. Then d(H) + d(L) ≤ d(G) with equality if and only if H\G/L
is compact.

Table 2 lists some homogeneous spaces that do admit compact forms
under the criterion of Theorem 3.7 together with the relevant subgroup L.
We encounter here the compact forms that are evidence for Conjecture 1.3.
As we noted in Remark 1.4, up to switching H and L, these are the only
homogeneous spaces of reductive type with G simple and linear admitting
standard forms (up to conjugation of H in G and perhaps taking connected
components).

The standard compact forms with G = SO(2, 2n) and G = SO(4, 4n)
were first found by Kulkarni in [Kul81]; the rest of the examples in Table 2
are due to Kobayashi in [Kob89], [Kob92a] and [Kob96b].

3.5 Virtual cohomological dimension

The central thrust of the Calabi–Markus phenomenon and the related re-
sults above is that there must be some coherence among the sizes (measured
by real rank or by dimension of the corresponding Riemannian symmetric
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space) of G, H, and L. This idea was used further by Kulkarni in examining
the spaces O(p, q)\O(p+ 1, q). When p or q are 1, we recover the relativistic
space forms Calabi and Markus studied in [CM62]. Kulkarni proves a num-
ber of results in his article. Toward our purposes here, he uses cohomological
dimension of groups to prove the following:

Theorem 3.9 (Kulkarni, [Kul81] Cor 2.10). If p and q are odd, then there
is no compact Clifford–Klein form of O(p, q)\O(p+ 1, q).

This approach has found its most complete statement in the work of
Kobayashi:

Theorem 3.10 (Kobayashi [Kob92b], Thm 1.5). Let H\G be of reductive
type. If there exists a reductive H ′ < G such that H ′ ∼ H and d(H ′) > d(H),
then H\G has no compact form.

From the definition of∼ (3.3) it is easy to check that any discrete Γ acting
properly on H\G will also act properly on H ′\G. Thus, we can construct
a restriction on the sizes of G, H and Γ for proper actions in the vein of
Theorem 3.7 but with the discrete group Γ replacing L. This is supplied
by the following Lemma, in which virtual cohomological dimension (vcd)
replaces the dimension of the corresponding symmetric space. The proof
of Theorem 3.10 from this lemma is clear. Recall that the cohomological
dimension of a group Γ is the maximal n for which the group cohomology
Hn(Γ,M), where M is an arbitrary RΓ-module, does not vanish. The virtual
cohomological dimension is this value for any finite-index subgroup of Γ (see
[Bro94]).

Lemma 3.11 (Serre [Ser71] when H\G is simply connected, Kobayashi
[Kob92b] in general). If discrete Γ < G satisfies Γt̄H, then

• vcd(Γ) + d(H) ≤ d(G) and

• vcd(Γ) + d(H) = d(G) if and only if H\G/Γ is compact.

This approach supplies numerous other examples of homogeneous spaces
without compact forms. The following examples are taken from [Kob92b],
Table 4.4; see that table for a number of examples involving exceptional Lie
groups.

3.6 Clifford algebras

As a final entry in this catalogue of ‘topological’ approaches, let me record
the following theorem of Kobayashi and Yoshino:

Theorem 3.12 (Kobayashi–Yoshino, [KY05] Thm 4.2.1). The following
triples of Lie groups satisfy the conditions of Thm 3.7, and hence H\G and
G/L have compact forms:
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G H h′

SL2n(R) SO(n, n) sp(n,R)

SU∗(2n) SO∗(2n) sp(bn2 c, n− b
n
2 c)

SU(2n, 2n) SO∗(4n) sp(n, n)

Sp(2n,R) U(n, n) sp(n,C)

SO(2n, 2n) SO(2n,C) u(n, n)

SO∗(2n) SO∗(2p)× SO∗(2q) so(2) + so∗(2n− 2)

SLn(C) SO(n,C) u(bn2 c, n− b
n
2 c)

SO(n,C) SO(p,C)× SO(q,C) so(n− 1,C)

SO∗(2n) U(p, q) so∗(2r)
n ≥ 3, 3p ≤ 2n ≤ 6p r = min(n, 2p+ 1, 2q + 1)

SL2n(C) SU(n, n) sp(n,C)

Sp(n,R) Sp(p,R)× Sp(q,R) sp(n,R)

Table 3: Some homogeneous spaces H\G without compact Clifford–Klein
forms. Throughout, n = p+ q and p, q > 1.

G H L

GL2(H) GL1(H) Spin(1, 5)

O∗(8) O∗(6) Spin(1, 6)

O(8,C) O(7,C) Spin(1, 7)

O(8, 8) O(7, 8) Spin(1, 8)

Some of these have appeared already in Table 2, and several can be ob-
tained by other approaches. What is particularly interesting in this theorem
is the unified treatment of the Spin(1, q) cases and the introduction of a new
technique, namely, the use of Clifford algebras to calculate Cartan projec-
tions and verify the first condition of Theorem 3.7. I will not attempt to
survey this approach here, but instead refer the reader to [KY05].

4 Geometry

4.1 A contribution from symplectic geometry

In [BL92], Benoist and Labourie provide a useful restriction on H via sym-
plectic geometry. The restriction is algebraic – the center of H cannot be
‘large’ in that it cannot contain any hyperbolic elements.

A simplified version of Benoist and Labourie’s proof is available in the
following special case. Suppose T is a one-parameter subgroup of G gener-
ated by a hyperbolic element t in g; let ZG(T ) be the centralizer of T . We
will show that there is no compact manifold with a (G,G/ZG(T ))-structure.
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First, note that ZG(T ) is isomorphic to M × T for some subgroup M of G.
Then one has a fiber bundle G/M → G/ZG(T ) with R-fibers corresponding
to the fibration by T -orbits. The Killing form 〈 , 〉 gives a 1-form on G/M ,
namely Y 7→ 〈t, Y 〉 for any Y ∈ g, which descends to G/ZG(T ). One can
show that this 1-form is a connection whose curvature is a symplectic form,
specifically ωt(Y,Z) = 〈t, [Y,Z]〉, for Y, Z ∈ g. As ωt is symplectic, ω∧dt
is the volume form on G/ZG(T ). However, after perhaps passing to finite
cover, there is a non-vanishing section of the line bundle over G/ZG(T ), and
ωt will be exact – the differential of the connection 1-form associated to that
section. This in turn implies that the volume form obtained from ωt is exact,
which is impossible for a compact manifold and proves there is no compact
form. Note that this entire argument deals with local, G-invariant objects,
so it can be transferred over to a manifold with a (G,G/ZG(T ))-structure.

Benoist and Labourie adapt this argument for the more general situa-
tion H ⊆ ZG(T ), providing restrictions on the center of H. Their argument
involves using fibrations by weight spaces for elements in H to build a con-
nection with corresponding curvature tensor which is symplectic and coho-
mologically trivial. They obtain the following results. Note that as their
approach deals only with local, G-invariant objects, Theorem 4.1 and some
of its corollaries apply to compact manifolds locally modeled on H\G, not
just to Clifford–Klein forms.

Theorem 4.1 (Benoist–Labourie, [BL92] Thm 1). Let G be a connected,
semisimple real Lie group, H a connected unimodular subgroup. If there
exists a compact manifold with a (G,H\G)-structure, then the Lie algebra
of the center of H does not contain any hyperbolic elements.

Corollary 4.2 (Benoist–Labourie, [BL92] Cor 1). Let G be algebraic, semisim-
ple and real. If H is algebraic and reductive and there exists a compact
manifold with a (G,H\G)-structure, then the center of H is compact.

Corollary 4.3 (Benoist–Labourie, [BL92] Cor 2). If G is connected, semisim-
ple, with finite center and H is connected and reductive and H\G admits a
compact Clifford–Klein form, then the center of H is compact.

4.2 Two approaches via representation theory

In [Mar97], Margulis presents an approach to the existence question built on
representation theory of the groups involved. Specifically, he gives a criterion
for nonexistence based on matrix coefficients for unitary representations of
H on certain L2 functions on H.

Let G be unimodular, locally compact, K a compact subgroup and H
a closed subgroup. Matrix coefficients enter via his definition of (G,K,H)-
tempered actions on some space X; for our purposes the following is the
relevant application of this definition.
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Definition 4.4 ((G,K)-tempered subgroups, [Mar97] Defn 2). We call H
a (G,K)-tempered subgroup of G if there exists a function q ∈ L1(H) such
that

|〈ψ(h)w1, w2〉| ≤ q(h)‖w1‖‖w2‖

for all h ∈ H, all ψ(K)-invariant functions w1, w2 ∈ L2(H) and all unitary
representations ψ of G on L2(H).6

Margulis’s result is the following:

Theorem 4.5 (Margulis, [Mar97] Thm 1). Let G,H and K be as above, and
let F be any noncompact closed subgroup of H. Suppose that H is (G,K)-
tempered. Then there is no compact form of F\G. (In particular, there is
no compact form of H\G.)

The main idea of Margulis’s approach is the following. Suppose there is
a compact form of H\G. Then one may take a compact set M ⊂ G/Γ such
that HM = G/Γ. Margulis constructs a pair of L2 functions, one supported
around M and one supported on some compact set far from M in the H-
direction. Applying the (G,K)-tempered condition with these functions, he
shows that the measure of G/Γ − HM is positive; in particular that HM
cannot be all of G/Γ.

The (G,K)-tempered criterion is not always easy to check, but Mar-
gulis provides several nice examples. Further examples and more detailed
exposition can be found in [Oh98]. First, if G is connected semisimple
with Kazhdan’s Property (T ) (see, e.g. [Zim84] Chapt. 7), K maximal
compact and H abelian and diagonalizable, standard arguments showing
exponential decay of matrix coefficients can be applied to show H is (G,K)-
tempered. Perhaps of more interest to us here, however, are two results in-
volving the case G = SLn(R), K = SO(n). By direct computations and some
knowledge of representation theory, one can show that H = αn(SL2(R)) is
(G,K)-tempered, where αn is the irreducible n-dimensional representation
of SL2(R) and n ≥ 4. Likewise, for n ≥ 3, let φ : L → SLn(R) be a repre-
sentation of a connected simple Lie group, with irreducible components φi.
If the sum of the highest weights for the nontrivial φi is larger than the sum
of the positive roots for L, then φ(L) is (G,K)-tempered. Thus, if there
are many nontrivial φi, or high-dimensional φi in comparison to the ‘size’ of
L (as measured by the sum of its positive roots) then φ(L)\SLn(R) has no
compact form.

It is perhaps instructive to put these results alongside the results for the
examples SLn−k(R)\SLn(R) discussed in connection with Kobayashi and
Benoist’s results (in particular Thm 3.5). For Margulis’s approach, we need
SLn−k(R) to be quite small, but to be embedded in SLn(R) in a ‘large’ way –

6For L1(H) and L2(H) the implied measure is the Haar measure on H.
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irreducibly, perhaps. Benoist’s result holds when SLn−k(R) is large (k = 1)
but is not embedded irreducibly in SLn(R).

To close this section on ‘geometric’ approaches to the problem, let us note
a second approach that uses representation theory. This approach is due to
Shalom [Sha00], and again relies on decay of matrix coefficients, although
in a different way than Margulis. Shalom studies unitary representations
of SO(1, n) and SU(1, n) and their cohomology. He is able to reproduce
some of the rigidity results associated to groups of higher rank in these
cases. A full description of his results is far beyond our present scope, but
presenting their application to the compact forms question will serve as
a bridge between the representation-theoretic approach and the dynamical
approach to be described in the next section.

Shalom proves the following theorem.

Theorem 4.6 (Shalom, [Sha00] Thm 1.7). Let G be a simple Lie group
with finite center, Λ a discrete, infinite subgroup of G admitting a discrete
embedding into SO(1, n) or SU(1, n). Assume there exists a nonamenable,
closed subgroup L in G with noncompact center which commutes with Λ.
Then Λ\G admits no compact quotient.

Taking H a closed Lie subgroup of G containing Λ yields results on com-
pact forms of homogeneous spaces. One particular example is the following:

Corollary 4.7. Let G = SLn(R), n ≥ 4, H = SL2(R) embedded in the upper
left-hand corner of G. Then H\G has no compact quotient. The same holds
with C replacing R.

By way of explaining how this theorem serves as a bridge between our
exposition of the approach via representation theory and the approach via
dynamics, let us give the briefest of overviews of the proof. Following an idea
developed by Zimmer, and which will be used repeatedly in the next section,
Shalom studies the L-action by left-multiplication on the Γ bundle G/Γ→
Λ\G/Γ over a compact form. Shalom then uses the representation theory
he has developed to study cocycles associated to this action to complete the
proof. A similar idea will appear again in the next section, where dynamics
will fully take over with the appearance of ergodic theory.

5 Dynamics

5.1 The work of Zimmer, Labourie and Mozes

The approach to the compact forms problem via dynamics was pioneered
by Zimmer in [Zim94]. In this paper he deals with cases where ZG(H) is a
large group; in particular, he works under the following assumption:

• There is a semisimple group of higher rank J < ZG(H).
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An illustrative example of this case is given by taking G = SLn(R) and
H = SLn−k(R) with k ≥ 3, embedded in the upper left-hand corner of G.
Here J = SLk(R) and the assumption above requires only that k ≥ 3.

The key element to Zimmer’s approach is the application of his cocycle
superrigidity theorem. Specifically, J acts by left-multiplication on the H-
bundle G/Γ → H\G/Γ. If σ : H\G/Γ → G/Γ is a measurable section of
this bundle, j ∈ J and x ∈ H\G/Γ, one calculates that

σ(j · x) = α(j, x)j · σ(x) (1)

where α : J ×H\G/Γ→ H is a measurable map. It is easy to verify that α
satisfies the (dynamical) cocycle equation α(j1j2, x) = α(j1, j2 · x)α(j2, x).
Zimmer’s cocycle rigidity theorem (see [Zim84]) states that if J is semisimple
of higher rank, H is an algebraic group, the algebraic hull of α in G is
connected semisimple, and the J-action on H\G/Γ is irreducible, then the
cocycle α is equivalent to a trivial cocycle. That is, up to a new choice of
the measurable section, α is independent of the space variable x, in which
case the cocycle equation reduces to the assertion that α is a homomorphism
from J to H.

Two remarks are in order here. First, the algebraic hull is the unique
(up to conjugacy) minimal algebraic group in which a cocycle equivalent to
α takes values. Questions about the algebraic hull of α are dealt with in
the final section of [LMZ95]. The assumptions on the hull detailed above
are ensured, perhaps after moving to a finite ergodic cover of H\G/Γ, pro-
vided that the algebraic hull is not compact. In the compact case, simpler
arguments are deployed in [LMZ95]. Second, the action of J on H\G/Γ is
irreducible for a J-ergodic probability measure µ if the action by any non-
central normal subgroup of J is also ergodic. This is a significant issue for
the compact forms question; it has thus far been addressed by assuming
that all simple factors of J are higher rank on their own so that superrigid-
ity applies to each individually. See Question 5.5 below for a comment on a
situation in which the irreducibility issue obstructs the solution of a natural
compact forms question by these methods.

Zimmer first approaches the compact forms question in [Zim94] and con-
tinues with Labourie and Mozes in [LMZ95]. Their most general result is
the following:

Theorem 5.1 (Labourie–Mozes–Zimmer, [LMZ95] Thm 1.1). Let H and
G be real algebraic and unimodular, and suppose that there is a semisimple
J < ZG(H) all of whose simple factors are higher rank. Suppose that J is
not contained in a proper, normal subgroup of G and that

(i) the image of every nontrivial homomorphism J̃ → H has compact
centralizer in H;
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(ii) there is a nontrivial, R-split, 1-parameter subgroup B in ZG(HJ) that
is not contained in a normal subgroup of G.

If there is a compact form H\G/Γ, then H is compact.

In [LMZ95], Labourie, Mozes and Zimmer actually address a more gen-
eral situation than Clifford–Klein forms. Theorem 5.1 applies to any com-
pact manifold locally modeled on H\G, the variant of Question 1.1 men-
tioned in the introduction.

The proof of Theorem 5.1 falls into two cases, as dictated by condition
(i): either ρ is trivial (i.e. the cocycle for the J-action takes values in a
compact subgroup of H), or its image has compact centralizer. In the second
case a short argument allows the authors to consider the cocycle for the B-
action (utilizing (ii)) and conclude that it takes values in a compact group
(now ZH(ρ(J)). In either case one lifts the volume measure m from H\G/Γ
to G/Γ using the section σ and averages it over a compact set in the fiber
direction to obtain a finite, J-invariant measure which must by construction
be the restriction of Haar measure on G/Γ to a positive measure subset.
An application of Moore’s ergodicity theorem (see, e.g. [Zim84]) shows that
this can only occur if H is compact.

The conditions (i) and (ii) of Theorem 5.1 are specific to details of
the proof but not to the overall philosophy of applying superrigidity to the
compact forms question. Note that in the test case of SLn−k(R)\SLn(R),
condition (i) restricts application of the theorem to k ≥ n/2. In [LZ95],
Labourie and Zimmer provide a separate argument to prove nonexistence
for the case k ≥ 3:

Theorem 5.2 (Labourie–Zimmer, [LZ95]). There is no compact form of
SLn−k(R)\SLn(R) for k ≥ 3.

Sketch of proof. We prove by contradiction; G = SLn(R) andH = SLn−k(R).
Cocycle superrigidity provides a trivial cocycle for the J = SL3(R)-action
– i.e. α = ρ, a homomorphism from J to G, up to an error in a compact
subgroup K of H. Lift the ergodic measure µ to a finite measure σ∗(µ) on
G/Γ and average this over K to provide a finite measure µ̂ which covers
µ. Examining equation (1) one sees that µ̂ is invariant under gr(ρ)(J), the
graph of ρ applied to J . Likewise, h∗µ̂ is invariant under h gr(ρ)(J)h−1,
for h ∈ H. If ρ is irreducible as a representation of SL3(R) into SLn−k(R),
Labourie and Zimmer fall back on the arguments of [LMZ95]; if it is re-
ducible they show that a properly chosen H-conjugate of gr(ρ) intersects
H in a noncompact subgroup. This noncompact group acting in the fiber
direction of the bundle G/Γ → H\G/Γ cannot preserve the finite measure
h∗µ̂, providing a contradiction.

The final step of this argument involves algebraic structure that is fairly
specific to the case of SL’s – namely that there is an element of the Weyl
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group for SLn(R) that exchanges any two diagonal entries while leaving the
rest fixed. To remove the algebraic conditions of Theorem 5.1 it is necessary
to adapt a more general approach as below. It also proceeds by (eventually)
reducing the question to a question about subgroups of G.

5.2 A recent improvement

The following theorem presents an improvement to Theorem 5.1 in that it
removes the algebraic conditions (i) and (ii) and the requirement that J
is not contained in a proper, normal subgroup of G. To achieve this, we
must sacrifice slightly by requiring G simple, but this is not a terrible loss.
Indeed, all examples Labourie, Mozes and Zimmer provide are for G simple.

Theorem 5.3 (Constantine, [Con11] Main Theorem). Let G be a connected,
simple Lie group with finite center and H a connected, noncompact, reductive
Lie subgroup. Suppose that J < ZG(H) is a simple Lie group with real rank
at least two. Then there is no compact form of H\G.

Sketch of proof. Proceed as above, applying cocycle superrigidity and pro-
ducing the gr(ρ)-invariant measure µ̂ on G/Γ. An additional result of co-
cycle superrigidity is that ρ is a rational map, and hence it takes unipotent
subgroups to unipotent subgroups. We may assume that J is generated
by unipotents, then take an ergodic component of µ̂ for the gr(ρ)-action
and apply Ratner’s measure classification for unipotent flows to this mea-
sure ([Rat91]). Ratner provides that this measure is the image of the Haar
measure for some subgroup L ⊃ gr(ρ) of G along an L-orbit in G/Γ.

It is clear from its construction that the measure described by the L-orbit
covers µ and its support extends only compactly in the H-fiber direction.
The latter fact implies that L ∩ H is compact. To utilize the former, one
studies the dynamics of the J-action on H\G/Γ and the measure µ. The
application of superrigidity allows one to calculate Lyapunov exponents for
this action, recording exponential expansion and contraction of orbits under
various flows in the J-action. Standard tools from the theory of hyper-
bolic dynamics imply that (roughly speaking) the support of µ extends in
directions with nonzero exponents. Separate arguments using dynamics of
unipotent elements in J and the pseudo-Riemannian structure of H\G/Γ
show the support also extends in directions with zero exponents. The result
of all this is that since the L-orbit covers a measure whose support extends
in all directions in H\G/Γ, one also has that HL = G. The proof is com-
pleted by showing that under the conditions of the theorem, no subgroups
L satisfying L ∩H compact and HL = G exist (see Remark 1.4).

One interesting feature of this method of proof is that it proceeds through
verifying Conjecture 1.3 for the homogeneous spaces under consideration;
this holds with slightly loosened restrictions on G:
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G H conditions

SLn(R) SLn−k(R) k ≥ 3

SLn(C) SLn−k(C) k ≥ 3

SO(n,m) SO(n− k,m− l) k ≥ 2, l ≥ 3

PSO(2n,C) PSO(2(n− k),C) k ≥ 2

SO(2n+ 1,C) PSO(2n− k),C) k ≥ 2

SO(2n+ 1,C) SO(2(n− k) + 1,C) k ≥ 2

SU(p, q) SU(p− k, q − l) k, l ≥ 2

Sp(2m,R) Sp(2(m− k),R) k ≥ 2

H ′ a noncompact
G listed above H ′ reductive subgroup of the

corresponding H listed above

Table 4: Some homogeneous spaces H\G without compact Clifford–Klein
forms

Theorem 5.4 (Constantine, [Con11] Characterization Theorem). Let G
and H be as above, but with G allowed to be semisimple rather than simple.
Assume that there is a semisimple Lie group J < ZG(H) such that:

(1) All simple factors of J have real-rank at least two

(2) The vector space sum of h and the Lie algebra generated by all nonzero
weight spaces for a Cartan subgroup A < J is g.

Then any compact form of H\G is standard.

Table 4 lists a few examples of homogeneous spaces which these theo-
rems imply do not have compact forms. In their full generality, most arise
from Theorem 5.3, with the exception of SLn−k(R)\SLn(R), which is due to
Labourie and Zimmer as noted above. Many are also proven by Kobayashi
as noted in [Kob96b], but with stronger restrictions on k and l.

To close this section, the author would like to pose the following question:

Question 5.5. Does SO(n − 2,m − 2)\SO(n,m) have a compact Clifford–
Klein form?

The reader will notice that this case is excluded from Table 4. This is
because the semisimple part of ZG(H) is SO(2, 2) which is semisimple and of
higher rank, but not simple (SO(2, 2)o ∼= (SL2(R)× SL2(R))/{±(1, 1)}). To
prove nonexistence of a compact form, one needs to address the irreducibility
condition for superrigidity – if this is accomplished, the argument which
proves Theorem 5.3 will apply.
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6 Deformations and moduli spaces of compact forms

We close this survey by taking up some results, many of them quite recent,
on the second question of the introduction. Namely, when a homogeneous
space has a compact form, what can we say about the space of all possible
compact forms? We will begin by collecting the evidence for Kobayashi’s
Conjecture 1.3.

6.1 Evidence for the ‘standard forms’ conjecture

The reader will note that the only positive results on the existence question
which we have seen so far are those provided by Table 2 and due to the
algebraic construction of Theorem 3.7. That is, they are all standard forms.
This fact is the main empirical evidence for Conjecture 1.3.

We can note a small amount of further evidence. It is (trivially) true in
the Riemannian case. It is true for homogeneous spaces of SO(2, n) by work
of Oh, Witte-Morris and Iozzi which will be reported on below. Theorem 5.4
states that the conjecture is true in the stronger sense that all compact forms
are standard when there is a higher-rank action present (and the rest of the
requirements of that theorem are fulfilled). Note, however, that the (now
purely algebraic question) of whether any such forms exist is still open7, and
their existence may be unlikely, given the situation when G is simple.

This evidence is slight, of course; the main argument for the conjecture
is the empirical one. It seems to the author that this will be an extremely
difficult conjecture to prove in general, in large part because, as we have
seen, there is no over-arching approach to the problem.

6.2 Moduli spaces of compact forms

The reader will have noticed that Kobayashi’s conjecture is not that ev-
ery compact form is standard. This simpler situation is ruled out by the
following result, arrived at by Goldman, Ghys and Kobayashi.

Theorem 6.1 ([Gol85], [Ghy95], [Kob98]). There are nonstandard compact
forms.

There are a number of proofs to this theorem stated as such. Let us begin
with Goldman’s and Kobayashi’s original approaches and then proceed to
look at some very recent results in this direction. Ghys’s work deals with the
cases of G = SL2(R) and SL2(C). He constructs some interesting examples.

6.2.1 The work of Kobayashi and Goldman

Recall that we have previously defined AdS3 as H2,1 = SO(2, 2)/SO(1, 2).
It can also be defined as diag(SL2(R))\SL2(R) × SL2(R), or as PSL2(R)

7Remark 1.4 does not apply when G is only semisimple.
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endowed with the metric given by its Killing form, at least up to a finite
cover. The second description is more common among the authors whose
work is discussed in this subsection and fits better with their generalizations
of work on AdS3, so I will adopt it now. The description as PSL2(R) is
favored by Salein, Kassel and Guéritaud below.

In [Gol85], Goldman shows that not all compact forms of AdS3 are stan-
dard, an issue raised by the work of Kulkarni and Raymond in [KR85]. In
this case, the question of whether all forms are standard becomes whether
all forms have Γ conjugate into SL2(R) × SO(2) or SO(2) × SL2(R). He
proves

Theorem 6.2 (Goldman, [Gol85] Thm 1). Let M be a standard compact
form of AdS3 with H1(M ;R) 6= 0. Then there is a nontrivial deformation
space of nonstandard compact form structures on M .

Goldman recasts compact forms of SL2(R) in the language of geometric
structures. Let G be a Lie group and X a homogeneous space of G. As
noted earlier, a (G,X)-structure on a manifold M consists of a holonomy
homomorphism hol : π1(M) → G and a developing map dev : M̃ → X
which is a local diffeomorphism and which is equivariant with respect to
hol. The pair (hol, dev) is well-defined up to the natural G-action: namely,
g · (hol, dev) = (ghol(·)g−1, g · dev). These developing maps provide a
well-defined X-coordinate patch structure on M . If G preserves a pseudo-
Riemannian metric on X and we further require that the developing maps
be local isomorphisms, this enforces a unique pseudo-Riemannian metric on
M . The (G,X)-structure is complete if the developing map is a covering
map, in which case the (G,X)-structure gives M the structure X̃/Γ where
Γ = π1(M) and X̃ is the universal cover of X.8

In this setting, let us take X = SL2(R) and G = SL2(R) × SL2(R),
acting by left- and right-multiplication, which preserves the metric given
by the Killing form. To find nonstandard forms, we search for holonomy
representations that take unbounded image in both factors of G. It is a
general fact about (G,X)-structures – the Ehresmann–Thurston principle,
see [Thu80] and [Ehr50] – that given any holonomy representation h0 ∈
Hom(Γ, G) for Γ the fundamental group of a fixed compact manifold, there is
an open set U containing h0 in the variety Hom(Γ, G) consisting of holonomy
representations. Let us take h0 a holonomy representation of the form (1, π)
for some π : Γ → G. The (G,X)-structure defined by h0 is complete and
identifies M with a quotient of X. What remains for us to show is that we
can find a nearby representation h which still provides a free and properly
discontinuous action of Γ on X.

Goldman proves that h of the following form works. Let B be any hyper-
bolic or parabolic one-parameter subgroup of SL2(R) and let v be a noncon-
stant representation of Γ into B which is sufficiently close to the constant

8This completeness is equivalent to a notion of geodesic completeness; see [Gol85].
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representation (which exists because of the assumption H1(M ;R) 6= 0).
Then h(γ) = (v(γ), h0(γ)) gives a free and properly discontinuous action
and hence a (G,X)-structure on a compact manifold M which is nonstan-
dard.

In [Kob98], Kobayashi extends Goldman’s work significantly. We record
a definition first:

Definition 6.3. A deformation φt(Γ) of Γ < G is called trivial if each φt(Γ)
is conjugate to Γ in G. If all sufficiently small deformations of Γ are trivial,
Γ is called locally rigid in G.

Theorem 6.4 (Kobayashi, [Kob98] Thm A). Let H\G = diag(G′)\(G′×G′)
where G′ is a simple linear Lie group. Then

(1) For any uniform lattice Γ′ < G′, the quotient H\G/Γ remains a com-
pact form for Γ any sufficiently small deformation of Γ′ × {1} in G.
That is to say, any sufficiently small deformation of Γ′×{1} still acts
properly discontinuously and cocompactly on H\G.

(2) It is possible to find uniform lattices with nontrivial deformations of
this type in G if and only if G′ is locally isomorphic to SO(1, n) or
SU(1, n).

This generalizes Goldman’s work by taking G′ = PSL2(R) ∼= SO(1, 2)o and
Ghys’s by taking G′ = PSL2(C) ∼= SO(1, 3)o. To prove (2) =⇒ (1),
Kobayashi proves that for G′ locally isomorphic to SO(1, n) or SU(1, n),
there are uniform lattices in G′ × 1 with nontrivial deformations, and any
sufficiently small deformation preserves the properly discontinuous charac-
ter of the action on diag(G′)\(G′ × G′). That (1) =⇒ (2) follows from
Weil’s local rigidity theorem [Wei64] and some vanishing theorems for Betti
numbers (see citations in [Kob98], p. 406).

Kobayashi also observes the following:

Proposition 6.5 (Kobayashi, [Kob98] Thm B and §1.8). The following
homogeneous spaces admit compact forms that have nontrivial deformations
(n ≥ 1):

SO(1, 2n)\SO(2, 2n), Sp(1, n)\SU(2, 2n),

G2(R)\SO(3, 4), Spin(3, 4)\SO(4, 4).

There are locally rigid standard forms for the following homogeneous
spaces (n ≥ 1,m ≥ 2):

U(1, 2n)\SU(2, 2n), SO(3, 4m)\SO(4, 4m),Sp(1, n)\SO(4, 4n).

Note that all these examples are taken from Table 2, which lists homoge-
neous spaces with compact forms constructed from a triple of Lie groups
G,H,L (H and L play symmetric roles in this construction). They key
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to Theorem 6.4 and to the first set of examples in Proposition 6.5 is the
existence of a nontrivial centralizer of L in G. When ZG(L) is nontrivial,
an embedding of some lattice Γ in L into G can be deformed by finding
a nonconstant homomorphism ρ : Γ → ZG(L) and mapping γ 7→ γρ(γ).
Denote these deformed embeddings of Γ by Γρ; Kobayashi shows that for
ρ in a sufficiently small neighborhood of the constant homomorphism, Γρ
still acts properly discontinously, thus yielding a compact form. In Propo-
sition 6.5 these centralizers are compact and hence the deformations do not
affect proper discontinuity. In Theorem 6.4 on the other hand, the cen-
tralizer is noncompact, making the proof that proper discontinuity of the
action survives much more difficult. For the second set of examples in Prop.
6.5 Kobayashi observes that any uniform lattice in the L corresponding to
the given pair is locally rigid in G. One feature of this circle of results is
that the deformation of Γ does not need to be by the specific one-parameter
subgroups Goldman uses.

In addition to the papers of Goldman and Kobayashi, we note that sim-
ilar deformations have also been given by Ghys [Ghy87, Ghy95] and Salein
[Sal97]. We will have more to say about Salein’s extension of this work
below.

6.2.2 The work of Salein, Kassel and Guéritaud

Recently Salein, Kassel and Guéritaud have continued the work done on
moduli spaces of compact forms by providing new sufficient conditions for
understanding when deformed embeddings of Γ inG still give rise to compact
forms. In this work, the new compact forms presented are no longer small,
continuous deformations of standard forms. Rather, they are far from the
standard examples – even topologically different. Salein’s demonstration of
this fact was surprising and the work of these authors has greatly increased
our understanding of moduli spaces of compact forms.

Salein’s work on the problem can be found in [Sal00]. He again studies
AdS3 which is a model space for all Lorentzian 3-manifolds of constant cur-
vature -1; his preference is to work with PSL2(R) with metric given by its
Killing form. Recall that G := PSL2(R) × PSL2(R) acts on this space iso-
metrically. We will write (ρ, ρ0)(Γ) for the embedding of a discrete group in
G, and view a compact form of this homogeneous space as PSL2(R)/(ρ, ρ0)Γ
where Γ acts on PSL2(R) by (ρ(γ), ρ0(γ))x = ρ(γ)xρ0(γ)−1.

Now let ρ0(Γ) be a Fuchsian group in PSL2(R); let g be the genus of
the usual quotient PSL2(R)/ρ0(Γ). We will call a representation ρ from
Hom(Γ,PSL2(R)) ρ0-admissible if (ρ, ρ0)(Γ) acts properly discontinuously
on PSL2(R).9 Salein proves the following:

9Kulkarni and Raymond prove for any pair of representations that if (ρ, ρ0)(Γ) acts
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Theorem 6.6 (Salein, [Sal00] Thm 2.1.1). The set Adm(ρ0) of ρ0-admissible
homomorphisms is an open subset of Hom(Γ,PSL2(R)). For certain choices
of ρ0, Adm(ρ0) is disconnected, and has components in every connected com-
ponent of Hom(Γ,PSL2(R)), except the two extremal ones (which are copies
of Teichmüller space).

The openness part of this theorem is a consequence of the completeness
of constant curvature compact Lorentz manifolds, which is due to Klingler
[Kli96], and of the Ehresmann–Thurston principle. The second statement is
Salein’s contribution, and was quite surprising at the time in that it shows
that the moduli space of compact forms is not connected. In particular,
there are nonstandard forms which are not deformations of standard ones.
There are 4g − 5 such components – see [Gol88] for an excellent exposition.

The key step in Salein’s approach is the following Lemma, which provides
a criterion for admissibility of the pair (ρ0, ρ):

Lemma 6.7 (Salein, [Sal00], Lemma 2.1.3). If there exists a function f :
H2 → H2 which is uniformly strictly contracting and (ρ0, ρ)(Γ) equivariant
in that

f(ρ0(γ)z) = ρ(γ)f(z) for all γ ∈ Γ, z ∈ H2,

then ρ is ρ0-admissible.

Techniques in Fuchsian groups and hyperbolic geometry, such as studying
isometries via translation length, underpin Salein’s approach to the problem.

Salein’s criterion allows him to construct his examples in the following
simple way. Position a regular 4g-gon which is a fundamental domain for
ρ0(Γ) about the center of the Poincaré disk model for H2. Let f be a
contraction of the fundamental domain towards this center, chosen so that
the 4g-gon maps to a 4g-gon with geodesic sides, but now with angle sum
2πm with 1 < m < 2g. One can extend f to be Γ-equivariant so that it
satisfies Lemma 6.7; the new angle sum implies the Euler number of an
associated surface, which specifies which component of Hom(Γ,PSL2(R))
the representation belongs to.

Guéritaud and Kassel have also studied criteria for admissible pairs in
[GK12], building on Kassel’s earlier work in [Kas]. They study (ρ0, ρ)-
equivariant maps f such as those Salein’s criterion calls for, but in much
greater generality. They generalize to n-dimensional hyperbolic space and
define for each pair (ρ0, ρ) of representations into Isom(Hn) = SO(1, n) the
following constant:

Definition 6.8.

C(ρ0, ρ) := inf{Lip(f) : f Lipschitz and (ρ0, ρ)-equivariant}

where Lip(f) is the Lipschitz constant of f .

properly on SL2(R) then either ρ or ρ0 is injective with discrete and cocompact image
[KR85].
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They then prove:

Theorem 6.9 (Guéritaud–Kassel; see Chapter 5 of [Kas] for the case n = 2
and [GK12] Theorem 5 for the full result). The pair (ρ0, ρ) is admissible if
and only if, up to switching ρ0 and ρ, the representation ρ0 is injective and
discrete and C(ρ0, ρ) < 1.

This result comes out of a larger project of understanding the import
of the constant C(ρ0, ρ). In particular, they study f achieving C(ρ0, ρ) as
their Lipschitz constant, and the maximally stretched locus for such f , i.e.
those points in Hn which have no neighborhood over which the Lipschitz
constant for f is smaller than the global constant Lip(f). The ‘if’ part of
Theorem 6.9 is a consequence of Lemma 6.7 with proof adapted to the case
of Hn; the ‘only if’ follows from careful understanding of the structure of
the maximally stretched locus when C(ρ0, ρ) ≥ 1.

In [Kas12], Kassel improves on Kobayashi’s Prop. 6.5:

Theorem 6.10 (Kassel, [Kas12] Thm 1.1). Let G be a real, reductive, linear
Lie group; let H and L be closed, reductive subgroups with R-rank(L) = 1
with L acting properly discontinuously and cocompactly on H\G. For any
uniform lattice Γ of L, there exists a neighborhood U of the natural inclusion
in Hom(Γ, G) such that any φ ∈ U satisfies:

• φ(Γ) is discrete in G,

• φ(Γ) acts properly discontinuously and cocompactly on H\G.

As a corollary, Kassel obtains

Corollary 6.11 (Kassel, [Kas12] Corollary 1.2). There are Zariski-dense Γ
in SO(2, 2n) providing compact forms of U(1, n)\SO(2, 2n).

Prior to Kassel’s work, the only Zariski-dense Γ known (for H noncompact)
were for homogeneous spaces of the form diag(G′)\(G′×G′). The R-rank = 1
condition is natural as Margulis superrigidity implies that L of higher rank
are locally rigid in G.

The idea of Kassel’s proof is to study the Cartan projection for elements
of Γ. She then uses some interesting dynamics of the action of G on P(V )
for representations of G on V . The study of these dynamics allows one
to decompose any γ ∈ Γ as a product of elements from a finite set whose
Cartan projections can be carefully controlled.

6.2.3 The work of Guichard and Wienhard

Recent work by Guichard and Wienhard on Anosov representations has
yielded some corollaries about deformations of compact forms. In [GW12],
they prove the following:
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Theorem 6.12 (Guichard–Wienhard, [GW12] §13). Let L = SO(1, 2n),
embedded in G = SO(2, 2n) in the standard way. Let Γ be a uniform lattice
in SO(1, 2n) and ρ the induced embedding of Γ into SO(2, 2n). Then any
representation in the connected component of ρ in Hom(Γ,SO(2, 2n)) yields
a compact form of U(1, n)\SO(2, 2n).

That non-trivial deformations of compact forms for these spaces exist is
not new (see Prop. 6.5 and Thm. 6.10). However, Guichard and Wienhard
produce them in a new way. Their paper deals with Anosov representa-
tions of discrete groups into semisimple Lie groups G′ – a definition due to
Labourie ([Lab06]) that they prove unifies many previous examples of spe-
cial representations. To each such representation they can associate a flag
variety of G′ (formed by quotienting out by a parabolic subgroup) and on
this flag variety there is a domain of discontinuity on which Γ acts properly
discontinuously and cocompactly. In some special cases, this domain has
the structure of a homogeneous space for some G < G′, giving rise to their
examples. For the theorem above, they use Barbot’s result ([Bar13]) that
the full connected component of ρ consists of Anosov representations (rela-
tive to a certain parabolic subgroup) to obtain a stronger conclusion than
Theorem 6.10 and Corollary 6.11 have obtained: all of these representations
give compact forms.

These examples are a small part of an extensive paper. Guichard and
Wienhard do not undertake an exhaustive search for applications to compact
forms; it is likely that there are more to be found.

6.3 Deformations of the homogeneous space

To close this section, I would like to briefly touch on the work of Oh, Witte-
Morris and Iozzi on deformations of compact forms in another sense. Rather
than deforming the embedding of Γ in G to produce new compact forms of
H\G, they deform the embedding of H in G, thereby producing new homo-
geneous spaces that admit nonstandard compact forms. In this approach
the analogy with Teichmüller theory breaks down. We are no longer study-
ing the deformation space of compact forms of a given homogeneous space;
rather, the underlying homogeneous space changes. These results, rather,
speak to the wide (and likely wild) world of compact forms that exist.

Oh and Witte-Morris’s work is announced in the paper [OW00] and
treated in full detail in [OW02]. Iozzi and Witte-Morris continue this work
in [IWM04]. Oh and Witte-Morris deal with homogeneous spaces of SO(2, n)
and their main result divides into two pieces depending on the parity of n:

LetG = SO(2, 2m), presented as the group preserving the form 2x1xn+2+
2x2xn+1 +

∑n
i=3 x

2
i . Let HSU be the intersection of SU(1,m) (embedded in

G in the standard way) with AN where A consists of the diagonal elements
in G with positive entries and N consists of the upper-triangular matrices
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with ones along the diagonal. Note that SU(1,m)/HSU is compact and that,
in contrast to the reductive situation discussed through most of this survey,
HSU is solvable. Let Γ be a uniform lattice in SO(1, 2m); it will act properly
discontinuously and cocompactly on HSU\SO(2, 2m) be cause it does so on
SU(1,m)\SO(2, 2m).

Theorem 6.13 (Oh–Witte-Morris [OW02] Thms 1.5 & 1.7). (1) For a spe-
cific family of deformations HB of HSU, HB\G/Γ yields a compact
form. Moreover, for almost all choices of the deforming parameter B,
the group HB is not conjugate into SU(1,m), so these are truly new
examples. (See their paper for details on HB.)

(2) Among closed, connected, noncompact subgroups H of the Borel sub-
group of G such that H\G is noncompact, the only H\G possessing
compact forms are those which are conjugate to a cocompact subgroup
of SO(1, 2m) or to one of the HB.

A streamlined proof of this result is provided in [IWM04]; the key advance is
an a priori lower bound on the dimension of H, which makes the subsequent
case-by-case analysis quicker. For specifics on HB we refer the reader to
[OW02], but remark that the constructions are entirely explicit. The upshot
of this theorem is that the homogeneous spaces of SO(2, 2m) are entirely
understood. Those H conjugate into SO(1, 2m) return us to the examples
studied by Kobayashi in [Kob98] with their nontrivial deformation space.

Now let G = SO(2, 2m+ 1). As the algebraic construction of Conjecture
1.3 does not hold for this G and H = SU(1,m) it is conjectured that there
are no compact forms of SU(1,m)\G. This problem is still open, but Oh and
Witte-Morris show that its solution will settle all questions for homogeneous
spaces of SO(2, 2m+ 1):

Theorem 6.14 (Oh–Witte-Morris [OW02] Thm 1.9). Let G = SO(2, 2m+
1) and let H be closed, connected, noncompact with H\G noncompact. If
SU(1,m)\G has no compact form, then neither does H\G.

Finally, Iozzi and Witte-Morris obtain the following analogous result for
homogeneous spaces of G = SU(2, 2m):

Theorem 6.15 (Iozzi–Witte-Morris, [IWM04] Thm 11.5′′). Let G = SU(2, 2m)
and let H be a closed, connected, noncompact subgroup of G with H\G non-
compact. Then H\G admits a compact Clifford–Klein form if and only if
d(H) = 4m and H belongs to a specific family of deformations of SU(1, 2m)
or Sp(1,m) in G. (Recall that d(H) was defined in Prop 1.7.)

Again, the reader is referred to the paper for specifics of the deformations,
but they are explicitly given.
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7 The road ahead

Despite the extensive work on the existence question for compact forms,
there are still many open cases. The author’s favorite is SLn−2(R)\SLn(R)10.
Two very different approaches to the problem – the ‘topological’ approach
via Cartan projections of Benoist and Kobayashi, and the dynamical ap-
proach initiated by Zimmer – come right up to this problem, but both fail
critically. We certainly expect there are no compact forms, but a new idea
seems necessary, even for such an algebraically simple example. There is no
shortage of other homogeneous spaces for which the existence question is
open.

The deformation question is somewhat less developed, and there is cer-
tainly plenty more to be done. The work of Salein indicates how interesting
a moduli space for even the simplest examples will be, and one expects that
there is far more to the full moduli space than he and Guéritaud–Kassel
have discovered. The work of Oh, Witte-Morris and Iozzi indicates that
there are plenty of new compact forms to be discovered as we loosen the
restrictions on the homogeneous space.

I would like to close this survey, however, by briefly mentioning a very
recent result of Kassel and Kobayashi in which they have gone beyond the
existence and deformation questions, and begun to study the spectral theory
of these spaces.

Let σ be an involutive automorphism of G and let H = (Gσ)o be the
identity component of the set of fixed points, so that H\G is a pseudo-
Riemannian symmetric space. Let θ be a Cartan involution of G com-
muting with σ and K the corresponding maximal compact subgroup. Let
Specd(H\G/Γ) be the set of eigenvalues associated to L2 eigenfunctions of
the pseudo-Riemannian Laplacian, i.e. the discrete spectrum of this op-
erator. Kobayashi and Kassel introduce the notion of ‘sharpness’ in their
paper [KK12]. Roughly speaking, we say that the pair (H,Γ) satisfies the
sharpness condition if the Cartan projection of Γ diverges linearly from the
Cartan projection of H as one heads to infinity in the Cartan subgroup. A
precise formulation can be found in [KK12] §1.6.

Theorem 7.1 (Kassel–Kobayashi, announced in [KK11], detailed proofs in
[KK12]). Suppose that rank(H\G) = rank((K ∩ H)\H) where by rank we
mean the dimension of a maximal, semisimple, abelian subspace in the set
of fixed points of −dσ. Suppose that the pair (H,Γ) satisfies the sharpness
condition. Then:

1. For any compact form H\G/Γ, the spectrum Specd(H\G/Γ) is infi-
nite.

10Recall that the case SL2(R)\SL4(R) is known to have no compact form by Corollary
4.7.
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2. For standard compact forms with Γ < L and R-rank(L) = 1 and for
all compact forms of diag(SO(1, n))\(SO(1, n) × SO(1, n)), there is
an infinite subset of Specd(H\G/Γ) which is stable under any small
deformation of H\G/Γ.

For standard forms, the sharpness condition is always satisfied. In certain
other cases – for example AdS3-manifolds – it is known that all compact
forms are sharp [Kas]. Kassel and Kobayashi conjecture that it is always
satisfied.

This nice result gives us an indication of one road ahead for the study
of Clifford–Klein forms. There are many basic, unanswered geometric ques-
tions about these spaces; they are likely to be much more difficult in the
pseudo-Riemannan case than in the Riemannian case for the reasons we
have noted above. Very little work has been done in this direction, but the
results surveyed here provide a very wide variety of tools to address such
problems, as well as a library of examples on which to test them.
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[Wei64] André Weil. Remarks on the cohomology of groups. Annals of
Mathematics, 80:149–157, 1964.

[Wol62] Joseph A. Wolf. The Clifford-Klein space forms of indefinite
metric. Annals of Mathematics, 75:77–80, 1962.

[Wol11] Joseph A. Wolf. Spaces of constant curvature. AMS Chelsea
Publishing, Providence, RI, 6th edition, 2011.

[Zim84] Robert J. Zimmer. Ergodic theory and semisimple groups, vol-
ume 81 of Monographs in Mathematics. Birkhäuser, Basel, 1984.
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