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Abstract. We prove some results on the behavior of infinite sums of
the form

∑
f ◦ Tn(x) 1

n
, where T : S1 → S1 is an irrational circle

rotation and f is a mean-zero function on S1. In particular, we show
that for a certain class of functions f , there are Liouville α for which this
sum diverges everywhere and Liouville α for which the sum converges
everywhere.
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1. Introduction

Let (X,B, µ) be a probability measure space. Let T be an invertible,
measure-preserving, ergodic transformation on (X,B, µ). Let

∑
bn be a

positive, divergent series. Under what conditions do sums of the form

(1)
∞∑
n=1

f ◦ Tn(x)bn

1
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converge or diverge?
In the specific case bn = 1

n , the sum (1) is known as the one-sided er-
godic Hilbert transform (EHT) of f . Its convergence properties are of in-
terest in part because convergence of equation (1) ensures convergence of
the Birkhoff averages, and so results on the convergence or divergence of
equation (1) provide a stronger version of Birkhoff’s theorem, or indicate
that no strengthening in this direction is possible.

Conditions under which the one-sided ergodic Hilbert transform and the
more general equation (1) converge or diverge are very well studied. The
first study of convergence was by Izumi in [20]. Following Izumi’s work,
Halmos showed in [12] that if the measure is non-atomic, then there are L2

functions f for which L2-convergence of the EHT fails. Dowker and Erdös
showed that there are L∞ functions for which the more general sum (1)
diverges for almost every x ([9]).

Kakutani and Petersen in [15] extended the results of Dowker and Erdös
to show that mean zero functions for which the supremum of the norms
of the partial sums of (1) is infinite for a.e. x always exist in L∞ (see,
similarly, [18]). In [8], del Junco and Rosenblatt further extend this work.
They work in very general settings, allowing a range of transformations T ,
sequences bn, function spaces from which f is chosen, and a number of
different summation processes. They show that a.e.-divergence is generic
(a dense Gδ subset) in the function f in these settings. Their methods
also show that a.e. divergence occurs for a generic mean-zero continuous
function.

The case of continuous functions is also studied in [10] where the authors
prove that given any irrational α, a continuous mean-zero function exists
such that the EHT diverges for all x and that, under certain conditions on
its Fourier series, given any nonpolynomial continuous function there are
irrational α for which the EHT diverges at all x. Their paper presents a
number of other results on the interplay of conditions on the Fourier series
of f , the diophantine properties of α, and the convergence in various norms
of the EHT.

Divergent sum behavior has subsequently been investigated in very gen-
eral contexts. [2] provides a monograph-length treatment of the subject, and
[1] provides a good overview of work in the general setting of contracting
operators on Banach spaces. Further results can also be found in [7], [6],
[5], and [21].

In contrast to these general settings and the non-constructive proofs that
appear, we will demonstrate divergence in the case of the simple and well-
understood dynamics of circle rotations, with specific random variables f
that are quite simple – essentially indicator functions of intervals.

Let α ∈ (0, 1) be an irrational number and let T := Rα be the rotation
by α on S1 = R/Z. That is, Tx = x+ α (mod 1).

In Section 3 below we prove our first main theorem:
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Theorem 1. Let bn = 1
n and let f =

∑B
i=1 viχUi where {Ui} is a partition

of [0, 1] by intervals, satisfying the following three conditions:

(i)
∫
f = 0,

(ii) The values {vi} generate a discrete additive subgroup of R, and

(iii) There exists some integer d > 1 such that whenever
∑l

j=1 vij = 0, d
divides l.

Then there are irrational α such that (1) diverges for T = Rα and all points
x. Such α can be provided explicitly in terms of the continued fraction ex-
pansion.

The second and third conditions on f say that a sum of some number of
f ’s values which is not divisible by d will be uniformly bounded away from
zero. We note that these functions are Riemann-integrable, and form a dense
subset of L1([0, 1]). Another way to think of condition (iii) is as follows. Let
e : ZB → R by (m1, . . . ,mB) 7→

∑
mivi. Then consider s : ker(e) → Z by

(m1, . . . ,mB) 7→
∑
mi. Condition (iii) is that s is not surjective.

A simple case arises when f takes only the values ±1, in which case
d = 2. We will call such functions f mean-zero indicator functions for a
finite union of intervals. More generally, conditions (ii) and (iii) are satisfied
when U is a union of finitely many intervals with measure m(U) ∈ Q and
f = χU −m(U) (see Lemma 2.2). Finiteness of the set of intervals {Ui} is
important – given α, the reader can easily construct a mean-zero indicator
function for a countable union of intervals for which divergence everywhere
will fail.

Previous work on this problem has mainly used tools from functional
analysis, and has produced results for almost every x. Some exceptions to
this can be found in [10] and [2], but in each case some regularity of f or
additional assumptions on its Fourier series are required. A key difference
in Theorem 1 – and our subsequent theorems – is that we prove divergence
for all x.

There are several straightforward consequences of the proof of Theorem
1, which are proved in Corollary 3.3. First, the set of divergent α is dense.
Second, α can be taken to depend on f only through basic data: the number
B of intervals in U , an upper bound on the set {|vi|} and a lower bound
on the positive elements of the additive subgroup generated by {vi}. Third,
one can replace 1

n with any sequence bn such that
∑
n(bn+1 − bn) diverges.

Fourth, by a careful choice of α, one may further ensure that

sup
N

∣∣∣ N∑
n=1

f ◦ Tn(x)bn

∣∣∣ =∞ for all x.

The unbounded partial sums we find here are also present in the divergence
result [10, Theorem 2.1].
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In Section 4, we investigate the set of divergent α, for mean-zero indicator
functions. As noted previously, this is a Lebesgue measure zero set; the
following stronger result is true for bn = 1

n :

Theorem 2. Let f be a mean-zero indicator function for a finite union of
intervals. If α is not a Liouville number, then the ergodic Hilbert transform
of f converges at all points. Hence the set of α for which the EHT of f
diverges for any x has Hausdorff dimension zero.

This theorem was previously known. In [15], Kakutani and Petersen
note that convergence holds for non-Liouville α when f is the (mean-zero)
indicator function of an interval. They remark that this result follows from
number-theoretic results on the discrepancy for a non-Liouville number. As
they do not detail the proof and as we have been unable to find it elsewhere
in the literature, we include it in Section 4.1.

Theorem 2 leads to the question of how whether the ergodic Hilbert trans-
form diverges for all Liouville numbers. The answer is no, and we prove the
following theorem in Section 4.2, which does not seem to follow from the
type of arguments used for the proof of Theorem 2:

Theorem 3. Let f be a mean-zero indicator function for a finite union of
intervals. Then there are Liouville numbers α for which the ergodic Hilbert
transform of f converges for all x.

Our proof shows specifically how to produce such numbers using the con-
tinued fraction expansion. The technology of this proof also provides an
alternate way to prove Theorem 2. The proof relies only on the mechan-
ics of the continued fraction expansion, but it is considerably longer than
Kakutani and Petersen’s. We provide a brief discussion of how to use the
elements of this proof to prove Theorem 2 in Section 4.4.

1.1. Acknowledgements. We would like to thank Adam Fieldsteel and
Randy Linder for bringing this problem to our attention. We would also
like to thank Jon Chaika, Felipe Ramı́rez, David Ralston, Vitali Bergelson,
and Joseph Rosenblatt for helpful conversations and comments. We thank
an unnamed referee for extensive and valuable comments on an earlier draft
of this article.

2. Setup

We fix the following notation throughout the paper:

• α ∈ (0, 1) is an irrational number.
• We write α = [a1a2a3 . . .] for the continued fraction expansion of α.
• S[a1 . . . an] is the set of all irrational α with a continued fraction

expansion beginning with [a1 . . . an].
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• pn
qn

= [a1 . . . an] is the nth convergent to α. The qn can be determined

from the an via the recurrence relation

qn = anqn−1 + qn−2, q1 := a1, q0 := 1.

• T = Rα.
• 〈〈x〉〉 denotes the distance from x to 0 in S1.
• U = ∪Bl=1Il is a finite union of intervals in S1.
• For a fixed x ∈ S1 and for integers j1 ≤ j2, let

Oα[j1, j2] =
{
Riα(x) : j1 ≤ i ≤ j2

}
.

We call Oα[j1, j2] an orbit segment with length j2 − j1 + 1.
• If Oα[j1, j2] is an orbit segment, let

s(Oα[j1, j2]) =

j2∑
i=j1

f ◦ T i(x).

The following basic facts relate the continued fraction expansion of α to
the dynamics of T :

• For n odd, T qn(0) = qnα (mod 1) is closer to 1 than to 0, and for
n even, T qn(0) is closer to 0 than to 1. In other words, the nth

convergent to α is an overestimate for n odd and an underestimate
for n even (see, e.g. [17, Thm 8]).
• For irrational α, 〈〈T qn0〉〉 < 〈〈Tm0〉〉 for any m < qn+1. In other

words, the convergents are precisely the best approximations of the
second kind to α, i.e. 0 < m ≤ qn and l

m 6=
pn
qn

imply |mα − l| >
|qnα− pn| (see, e.g. [17, Thms 16 & 17]).

We also state here a pair of simple lemmas. The first will be used in the
proof of Theorem 1:

Lemma 2.1. For a fixed integer d > 1 and any irrational α, at least one of
each successive pair qn, qn+1 is not divisible by d.

Proof. Using the recurrence relation qm+1 = am+1qm + qm−1, if d divides
both qm and qm+1, it divides qm−1. Inducting downward in the index, we
would find that d divides q0 = 1, a contradiction. �

We note that an easy way to arrange that d never divides qm (for large
m) is to pick the am so that some pair qm, qm−1 are both not divisible by d
(this is easy to arrange) and then choosing all subsequent am to be multiples
of d.

Our second Lemma justifies a remark in the Introduction on functions
that satisfy the conditions of Theorem 1:

Lemma 2.2. Let U be a finite union of intervals such that m(U) ∈ Q. Then
f = χU −m(U) satisfies the conditions of Theorem 1.
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Proof. That conditions (i) and (ii) are satisfied is obvious. For condition
(iii), write m(U) = p/q with p and q relatively prime. Let d = q. The
function f takes values v1 = 1− p

q = q−p
p and v2 = −p

q . If m1v1 +m2v2 = 0,

multiplying through by q we have m1(q−p)−m2p = 0. Reducing mod q we
have −(m1 + m2)p ≡ 0 (mod q). Since p and q are relatively prime, d = q
must divide m1 +m2, as desired. �

3. Divergent α exist

3.1. The basic idea. The proof of Theorem 1 is driven by a simple idea.
The convergent pn

qn
is the best rational approximation of the second kind for

α with denominator less than qn+1 = an+1qn + qn−1. If an+1 is quite large,
then this approximation must be quite good (i.e. 〈〈qnα〉〉 is quite small) and
the orbits of x under T and Rpn/qn track closely for a long time. The orbit
of x under Rpn/qn is periodic, hitting qn points. Suppose that qn is large and
not divisible by d. Then, by assumptions (ii) and (iii) of the theorem, the
sum of values of f over the orbit of x under the rational rotation is bounded
away from zero. This constant rate of accumulation of positive or negative
values causes the sum for the rational rotation to diverge. With an+1 quite
large, orbit of the irrational rotation tracks that of the rational rotation
closely for a long time, and we will show that it must also accumulate extra
positive or negative values at a constant rate for a long stretch of orbit. This
will drive divergence of the sum.

3.2. Lemmas. Consider the orbit segment Oα[1, qn+1]. We decompose it
into segments σ0 = Oα[1, qn−1] and σl = Oα[qn−1 + (l− 1)qn + 1, qn−1 + lqn]
for l = 1, 2, . . . , an+1. Note that the cardinality of the orbit segment σl
depends on α only through the value of qn, i.e. only through the values of
the first n terms in the continued fraction expansion of α.

Lemma 3.1. Let C = {l ∈ [1, an+1 − 1] : s(σl) 6= s(σl+1)}. i.e. C is the
set of l at which s(σl) changes. Then |C| ≤ B, where B is the number of
intervals Ui in the definition of f .

Proof. First, σl+1 = Rqnασl = R±〈〈qnα〉〉σl with sign depending on whether
pn
qn

over- or underestimates α. As σ1 is an orbit segment of length qn, the

minimum distance between its points is 〈〈qn−1α〉〉 > an+1〈〈qnα〉〉. Thus, if
z is an endpoint of some interval in {Ui}, over the an+1 rotations of σ1 by
R±〈〈qnα〉〉, each of which moves points by 〈〈qnα〉〉, at most one orbit point
can cross z. Moreover, s(σl) 6= s(σl+1) only if an orbit point crosses the
endpoint of an interval under the rotation R±〈〈qnα〉〉 of σl. As there are B
endpoints, and each is crossed at most once, |C| ≤ B. �

We also need the following technical lemma:

Lemma 3.2. Fix a non-zero L ∈ R and κ,N1 ∈ N. Suppose that {cm}
satisfies |cm| < B0 for all m, and that the partial sums sn =

∑n
m=1 cm
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satisfy sn
n+κ ≥

L
3 for all n > N1 if L > 0, or satisfy sn

n+κ ≤
L
3 for all n > N1

if L < 0. Then for any real number A > 0 there is an N∗ ∈ N such that

|
∑N∗

m=1 cm
1

m+κ | > A, where N∗ depends only on L, κ, N1, B0 and A.

The proof of this lemma is similar to the proof of Kronecker’s Lemma.
The crucial fact here is that N∗ can be determined by the values of L, κ,
N1, B0 and A, without dependence on the specific terms of the sequence
{cm}. This will play a key role in the proof of Theorem 1.

Proof. For any N , the summation by parts formula yields

N∑
m=1

cm
1

m+ κ
=

sN
N + κ+ 1

−
N∑
m=1

sm

(
1

m+ κ+ 1
− 1

m+ κ

)

=
sN

N + κ+ 1
+

N∑
m=1

sm
m+ κ

1

m+ κ+ 1
.(2)

If N > N1, then the terms SN
N+κ+1 and

∑N
m=N1+1

sm
m+κ

1
m+κ+1 have the

same sign as L, by our hypothesis on the sequence {cm}. On the other

hand, the middle terms
∑N1

m=1
sm
m+κ

1
m+κ+1 might have a different sign. Since

|sm| ≤ mB0 for any such sequence {cm}, we can bound this potential can-
cellation without dependence on the specific sequence. By our hypothesis
on the sequence {cm}, we can choose n > N1 such that the magnitude
of
∑n

m=N1+1
sm
m+κ

1
m+κ+1 becomes arbitrarily large, without further assump-

tions on the sequence.
To be more concrete in our choices, let E =

∑N1
m=1

mB0
m+κ

1
m+κ+1 . Since

|sm| ≤ mB0, we have the bound |
∑N1

m=1
sm
m+κ

1
m+κ+1 | ≤ E. Choose N2 ∈ N

such that
∑N2

m=1
1

m+κ+1 > (A + E)|3/L|. Take N∗ ≥ max {N1, N2}. Since

N∗ ≥ N1, the term sN∗
N∗+κ+1 has the same sign and is larger in magnitude

than L/3. Since N∗ ≥ N2, we have∣∣∣∣∣
N∗∑
m=1

sm
m+ κ

1

m+ κ+ 1

∣∣∣∣∣ ≥
∣∣∣∣∣
N∗∑
m=1

L

3

1

m+ κ+ 1

∣∣∣∣∣
≥ A+ E.

Additionally, these two terms on the right side of equation (2) have the same

sign. Hence, |
∑N∗

m=1 cm
1

m+κ | > |L/3|+A > A. �

3.3. Proof of Theorem 1. Suppose qn is not divisible by d (possible by
Lemma 2.1). Let δ0 be the minimum non-zero value in the additive subgroup
of R generated by {vi}, and let ∆0 = max{|vi|}. By Lemma 3.1, if an+1

is much larger than B, then there will be a long stretch of indices l during
which s(σl) does not change. Over this stretch, the sum accumulates values
of at least δ0 or at most −δ0 at a rate of at least 1/qn. This, via Lemma
3.2, will drive the divergence of the sum.
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We will find α satisfying the requirements of Theorem 1 by inductively
defining its continued fraction expansion. This requires some care in the
sort of arguments we can make. Recall that S[a1 . . . an] is the set of all
irrational α with a continued fraction expansion beginning with [a1 . . . an].
To define an+1 in our inductive scheme, we must make arguments which rely
only on fixed data (such as the values of B and δ0) and on statements which
are true for all α ∈ S[a1 . . . an]. For example, since α is not yet known,
we do not know the exact sequence (f ◦ Tnx)n. We must instead rely on
information about it gleaned only from the first n terms of the continued
fraction expansion, such as the values of q1, . . . qn.

Proof of Theorem 1. We define α by producing its continued fraction ex-
pansion inductively. We prove divergence via the Cauchy criterion, showing
that for any qn, there are n2 > n1 > qn such that |

∑n2
n=n1

f ◦ Tn(x) 1
n | > 1.

Let a1 = 1. Then q1 = 1. By choosing all an ≡ 0 (mod d) for n ≥ 2, we
can ensure that all qn are not divisible by d, slightly simplifying the proof
below (otherwise we invoke Lemma 2.1). Since the argument below proceeds
by choosing an+1 sufficiently large, this causes no problems.

For some n ≥ 1, suppose that we have chosen a1, . . . , an with a1 = 1, an ≡
0 (mod d) for n ≥ 2. Then qn 6≡ 0 (mod d). Moreover, note that all
α ∈ S[a1 . . . an] have the same qn and qn−1.

Let κ = qn−1. Pick any αn ∈ S[a1 . . . an] and let c′m(αn) = f ◦T κ+m(x) =
f ◦ Rκ+m

αn
(x). The sequence {c′m(αn)} depends, of course, on the value of

αn. However, for all choices of αn ∈ S[a1 . . . an], each orbit segment σl
accumulates values uniformly bounded away from zero:∣∣∣ qn∑

m=1

f ◦ T κ+(l−1)qn+m(x)
∣∣∣ ≥ δ0

for any l = 1, 2, . . . an+1. Now let

cm(αn) =

{
c′m(αn) if m ∈ σl with s(σl) > 0
−c′m(αn) if m ∈ σl with s(σl) < 0.

That is, we switch the signs of c′m(αn) on an orbit segment σl precisely when
necessary to ensure the sum of cm(αn) over the segment is positive. Now,
for any αn ∈ S[a1 . . . an], the sequence {cm(αn)} accumulates values of at
least δ0 over each segment σl.

Take B0 = ∆0, L = δ0/qn and N1 = 4∆0
δ0
q2
n > q2

n. As noted, κ = qn−1.

Let sm =
∑m

i=1 ci. First, we check that the hypotheses of Lemma 3.2 hold
at multiples of qn greater than N1. Then, we check that the hypotheses of
Lemma 3.2 hold between multiples of qn. First, at each m = lqn, sm

m+κ ≥
lδ0

lqn+qn−1
≥ δ0

qn
l
l+1 . If m > N1 > q2

n, then l > qn and l
l+1 >

1
3 . Thus, in this

case sm
m+κ >

L
3 .

Now suppose that lqn < m < (l + 1)qn with l ≥ 4∆0
δ0
qn. Note that for

such l, ∆0
2(l+2) <

1
6
δ0
qn

. Then sm > δ0l −∆0
qn
2 since the sum accumulates at
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least l extra δ0’s up to step lqn and, in the extreme case, the next qn
2 of the

terms between lqn and (l + 1)qn are −∆0’s. From this we compute:

sm
m+ κ

>
δ0l −∆0qn/2

(l + 1)qn + qn−1

>
δ0l −∆0qn/2

(l + 2)qn

=
δ0l

(l + 2)qn
− ∆0qn/2

(l + 2)qn

>
1

2

δ0

qn
− ∆0

2(l + 2)

>
L

3

by the choice of l ≥ 4∆0
δ0
qn. Therefore this choice of κ, L, B0 and N1 ensures

that Lemma 3.2 holds for the sequence {cm} defined by any αn ∈ S[a1 . . . an].
Let A = 2B + 1, where B is the number of intervals in U . For this A > 0,
Lemma 3.2 provides N∗. Choose an even an+1 so that an+1qn > N∗.

For any αn+1 ∈ S[a1 . . . anan+1], we now return to {c′m(αn+1)}, the un-
adjusted sequence from the sum

∑
f ◦ Tm(x) 1

m . By Lemma 3.1, there are
at most 2B values of l at which s(σl) 6= s(σl+1). Let l∗1 < l∗2 < · · · < l∗b be
the values of l where s(σl) changes. Let

τ0 = [1, qn−1 + l∗1qn],

τi = [qn−1 + l∗i qn + 1, qn−1 + l∗i+1qn] for 1 ≤ i < b, and

τb = [qn−1 + l∗bqn + 1, qn+1].

If for all 0 ≤ i ≤ b, |
∑

m∈τi f ◦ T
m(x) 1

m | < 1, then we arrive at a contradic-

tion to the fact, established above, that
∑qn+1

m=qn−1+1 cm
1
m > A = 2B+ 1. So

there must be at least one τi such that |
∑

m∈τi f ◦T
m(x) 1

m | ≥ 1. Taking n1

and n2 as the first and last integers in τi, we note that n2 > n1 > qn−1.
Since S[a1 . . . an] is a nested sequence of closed subsets of the circle, its

intersection is nonempty, and is in fact a single point since the continued
fraction expansion defines a number uniquely. Take {α} = ∩nS[a1 . . . an].
Let qn be the denominator of the nth convergent to α; it is clear that qn →∞
as n→∞. For each n, α ∈ S[a1 · · · an+2], so there exist n2 > n1 > qn such
that |

∑n2
m=n1

f ◦ Tm(x) 1
m | > 1. Hence, the series

∑
f ◦ Tn(x) 1

n diverges by
the Cauchy criterion. �

As mentioned in the introduction, our argument actually proves a stronger
result:

Corollary 3.3. Let FB,δ0,∆0,d be the set of all functions satisfying the con-
ditions of Theorem 1 with max |f | ≤ ∆0 and min〈v1, . . . , vB〉−{0} ≥ δ0. Let
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bn be any positive sequence such that
∑
n(bn+1 − bn) diverges. Then there

is a dense, uncountable set of irrational α such that

sup
N≥1

∣∣∣ N∑
n=1

f ◦ Tn(x)bn

∣∣∣ =∞

for any f ∈ FB,δ0,∆0,d and any x.

Proof. First, our construction of α depends on f only through the number
of intervals used to write U and the bounds δ0 and ∆0, so we get the result
for all f ∈ FB,δ0,∆0,d.

Second, the condition
∑
n(bn+1 − bn) divergent is sufficient to run the

argument of Lemma 3.2, which drives divergence throughout the rest of the
proof.

Third, in the proof of Theorem 1, one is free to choose the initial terms of
the continued fraction expansion of α, taking up the argument given there
only after this initial segment. Note that in doing so, we must take up the
argument at some n∗ where qn∗ 6≡ 0 (mod d); this is possible by Lemma 2.1.
This allows us to find a dense set of irrational α which are divergent.

Fourth, at each stage in the construction of α, we use A = 2B + 1 in our
application of Lemma 3.2 and argue from there that there exist n1, n2 > qn
with |

∑n2
n=n1

f ◦ Tn(x)bn| > 1. If instead we take at the nth stage of the
construction A = (2B + 1)n we will find that for some n1, n2 > qn we
must have |

∑n2
m=n1

f ◦ Tm(x)bm| > n. This implies that the partial sums∑N
n=1 f ◦ Tn(x)bn are unbounded.
Finally, note that our only requirement for divergence is that an are suffi-

ciently large. Since there are always infinitely many choices for each an, we
can construct uncountably many divergent irrational α. �

4. Liouville numbers and convergence

4.1. Proof of Theorem 2. In this section we give a proof of Theorem 2
which is alluded to by Kakutani and Petersen in [15].

Definition 4.1. An irrational real number α is Liouville if for all v ≥ 1,
there exists a rational number p

q such that∣∣α− p

q

∣∣ < q−(v+1).

Note that the Liouville condition is equivalent to 〈〈qα〉〉 < q−v. Let

Kv = {α : 〈〈qα〉〉 < q−v infinitely often}.

By Dirichlet’s theorem, K1 = R and by a result of Khintchine, for v > 1, Kv
is a null set (see, e.g. [4]). The Hausdorff dimension of the set of Liouville
numbers is zero. This follows from results of Jarńık [14] and Besicovitch [3];
see [22, Ch. 2] for a self-contained exposition.
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Liouville numbers are very well approximated by rational numbers whose
denominators are not too large. Similarly, the proof of Theorem 1 relies on
constructing α which are very closely approximated by their convergents.
So it is not too surprising that there is a connection between the two, and
this is the content of Theorem 2.

Let ω = (x1, x2, . . .) be a sequence of elements in [0, 1]. For our work we
will take ω = (nα + x (mod 1))n. The failure of equidistribution of this
sequence is measured by the discrepancy function:

Definition 4.2. (See, e.g. [19, §2.1]) The discrepancy of ω is

DN = DN (ω) = sup
0≤α<β≤1

∣∣∣#([α, β) ∩ ω|[1,N ])

N
− (β − α)

∣∣∣.
By the discrepancy of α, or DN (α) we will mean DN ((nα+ x (mod 1))).

It is immediate from Definition 4.2 that this function of N is independent
of x.

We recall the following definition and its connection to the Liouville prop-
erty.

Definition 4.3. (See, e.g. [19, §2.3]) Let η > 0. We say α is of type η if
η = sup γ such that

lim inf
q→∞

qγ〈〈qα〉〉 = 0 where q ∈ N.

As before 〈〈−〉〉 denotes distance from the nearest integer.

Remark 4.4. The usual notion of type compares q〈〈qα〉〉 to 1/ψ(q) for a
nondecreasing function ψ. These are related; α is of type η in the sense of
Definition 4.3 if η is the infimum of all τ for which α is of type < Cqτ−1 for
some C > 0 (see [19, Lemma 2.3.1]).

Liouville numbers are those of type ∞. By Dirichlet’s approximation
theorem, all numbers are of type at least 1, and by the Thue-Siegel-Roth
theorem, all irrational algebraic numbers are of type 1.

The following result on the discrepancy of non-Liouville α is the key tool
we need:

Theorem 4.5. (See, e.g. [19, Thm 3.2]) Let α be of type η. Then for all

ε > 0, DN (α) = O(N−1/η+ε).

We now prove Theorem 2 using this result.

Proof of Theorem 2. Let α be non-Liouville; suppose it is of type η,
where 1 ≤ η < ∞. Fix any x ∈ [0, 1). Let Snf =

∑n
i=1 f(nα + x). Us-

ing summation by parts,

N∑
n=1

f(nα+ x)

n
=
SNf

N
+

N−1∑
n=1

Snf

n(n+ 1)
.
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Using Theorem 4.5 and picking ε > 0 so small that −1/η + ε < 0, one

can easily show that |Snf | = O(n1−1/η+ε) = O(n1−t) for some t > 0. This
argument uses that f is a mean-zero indicator function for a finite union of
intervals. From this we immediately have that SNf

N → 0 as N → ∞ and

that
∑∞

n=1
Snf

n(n+1) converges, completing the proof. �

4.2. A decomposition scheme. We are left with the question of whether
all Liouville α are divergent. The proof in the previous section does not ad-
dress this question. We remark that the argument for divergence in Section
3 uses the fact that infinitely many qn’s are not divisible by d for the α
we constructed. This certainly does not hold for all Liouville α. We do
not know if some sort of requirement on residues of the qn’s is necessary to
ensure divergence, but we will show here that, independent of this concern,
there are convergent Liouville numbers. Specifically we will construct Liou-
ville numbers for which the arguments of the previous section can still be
used to prove convergence.

Theorem 3. There exist Liouville numbers α which are convergent for any
f = 2χU − 1, where U is a union of finitely many intervals with m(U) = 1

2 ,

and any x ∈ S1. The set of such α is dense.

The idea of the proof is to decompose the sequence (f ◦ Tn(0)/n) into a
countable number of (nearly) alternating subsequences whose sums we can
bound individually. If there were only finitely many such subsequences, we
would be done. That will not be the case here, but careful choice of α using
the continued fraction expansions provides enough control on the sums of
these individual sequences to enable us to prove convergence of the full series.

First, we want a scheme for decomposing the sequence (f ◦ Tn(0)/n)
into alternating sequences. Throughout the following, we write [a, b] for
{a, a + 1, . . . , b} and will refer to such subsets of the integers as intervals.
In the decomposition, we use nested intervals with lengths related to the
denominators of the continued fraction expansion, qi.

We write (cn) = (f ◦Tn(0)) and (γn) = (f ◦Tn(0)/n). We will use Roman
letters (dn, bn) to denote subsequences of (cn) and Greek letters (δn, βn) to
denote the corresponding subsequences of (γn).

We recall the Denjoy-Koksma Lemma:

Lemma 4.6. [13, VI Thm 3.1] Let f be any mean zero function on S1. Let
[a, b] be any interval of length qk. Then for any x ∈ S1,∣∣∣ ∑

j∈[a,b]

f ◦ T j(x)
∣∣∣ < V ar(f).

Corollary 4.7. Let f = 2χU − 1, where U is the union of B intervals and
m(U) = 1

2 . Then, for any interval [a, b] of length qk and any x ∈ S1,
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∣∣∣ ∑
j∈[a,b]

f ◦ T j(x)
∣∣∣ < 4B.

Definition 4.8. Sequence (xn) is a pair-permutation of (yn) if for all k ∈ N,
{x2k−1, x2k} and {y2k−1, y2k} are equal as sets.

In other words, (yn) is obtained from (xn) by permuting some pairs of
adjacent terms.

Definition 4.9. We call a sequence near-alternating if it is a pair-permutation
of an alternating sequence.

Let Qi =
∏i
j=1 qj . Then Q1 = q1 and Qi+1 = Qiqi+1 for all i ≥ 1.

To avoid the use of floor functions and to remove indices as efficiently as
possible, we recursively define a sequence of 0’s and 1’s. First, ξ1 is 0 if
q1−4B is even and 1 if odd. For i > 1, ξi is 0 if (4BQi−2 +ξi−1)qi−4BQi−1

is even and 1 if odd. Then⌊
(4BQi−2 + ξi−1)qi − 4BQi−1

2

⌋
=

(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi
2

.

Without loss of generality, assume that q1 > 4B. If this is not the case,
the proof can be modified by shifting all of the indices.

Proposition 4.10. There is a decomposition (cn) = t∞i=1(d
(i)
n ) such that

(d
(1)
n ) is union of (q1− 4B− ξ1)/2 subsequences, (d

(2)
n ) is a union of ((4B+

ξ1)q2 − 4Bq1 − ξ2)/2 subsequences, and (d
(i)
n ) is the union of ((4BQi−2 +

ξi−1)qi−4BQi−1− ξi)/2 subsequences for i > 2. Each of these subsequences

of some (d
(i)
n ) is near-alternating.

Proof. Throughout this proof, we will take “a length Qi interval” to mean
an interval of the form [(j − 1)Qi + 1, jQi] for some integer j ≥ 1.

Let (c
(0)
n ) = (cn) = (f ◦ Tn(0)). By Corollary 4.7, each length Q1 = q1

interval contains at least (q1−4B− ξ1)/2 indices such that cn = +1 and the
same number of indices such that cn = −1. For l = 1, . . . , (q1 − 4B − ξ1)/2,

let b
(1,l)
2j−1 be the lth term of (cn) that is equal to +1 with index in the jth

length Q1 interval. Similarly, let b
(1,l)
2j be the lth term of (cn) that is equal

to −1 with index in the jth length Q1 interval. Let (d
(1)
n ) be the union of

these (q1 − 4B − ξ1)/2 near-alternating sequences. Let X1 be the indices of

the terms of (cn) that are not in (d
(1)
n ). Then the intersection of each length

Q1 interval with X1 has size 4B + ξ1.
Since each length Q2 interval contains q2 length Q1 intervals, the intersec-

tion of Q2 with X1 has size (4B + ξ1)q2. Additionally, Corollary 4.7 implies
that the sum over each length q2 interval is at most 4B. Since there are q1

intervals of length q2 in each length Q2 interval, the sum over each length Q2

interval is at most 4Bq1. Since (d
(1)
n ) removes the same number of +1’s and
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−1’s from each length Q2 = q1q2 interval, the sum over the remaining terms
of each Q2 interval (the terms also in X1) is also at most 4Bq1. Thus, each
length Q2 interval contains at least ((4B + ξ1)q2 − 4Bq1 − ξ2)/2 remaining

indices (in X1) such that cn = +1, and similarly for −1. As above, let b
(2,l)
2j−1

be the lth remaining +1 and b
(2,l)
2j be the lth remaining −1, where the indices

as terms of (cn) are in the jth length Q2 interval and in X1. Let (d
(2)
n ) be

the union of these near-alternating sequences. Let X2 be the indices of the

terms of (cn) that are not in (d
(1)
n ) or in (d

(2)
n ). Then the intersection of each

length Q2 interval with X2 has size 4Bq1 + ξ2.
For the induction hypothesis, let i ≥ 2 be an integer. Suppose that we

have chosen disjoint sequences (d
(j)
n ) for all 1 ≤ j ≤ i. Let Xi be the set of

indices of the terms of (cn) that are not in any of the (d
(j)
n ) so far. Suppose

that the intersection of each length Qi interval with Xi has size 4BQi−1 +ξi.
Since each length Qi+1 interval contains qi+1 length Qi intervals, the in-

tersection of Qi+1 with Xi has size (4BQi−1 + ξi)qi+1. Additionally, Corol-
lary 4.7 implies that the sum over each length qi+1 interval is at most 4B.
Since there are Qi intervals of length qi+1 in each length Qi+1 interval, the

sum over each length Qi+1 interval is at most 4BQi. Since each (d
(j)
n ) for

1 ≤ j ≤ i removes the same number of +1’s and −1’s from each length
Qi+1 interval, the sum over the remaining terms of each Qi+1 interval (the
terms also in Xi) is also at most 4BQi. Thus, each length Qi+1 interval
contains at least ((4BQi−1 + ξi)qi+1− 4BQi− ξi+1)/2 remaining indices (in

Xi) such that cn = +1, and similarly for −1. As above, let b
(i+1,l)
2j−1 be the

lth remaining +1 and b
(i+1,l)
2j be the lth remaining −1, where the indices as

terms of (cn) are in the jth length Qi+1 interval and in Xi. Let (d
(i+1)
n ) be

the union of these near-alternating sequences. Let Xi+1 be the indices of the

terms of (cn) that are not in (d
(j)
n ) for 1 ≤ j ≤ i+ 1. Then the intersection

of each length Qi+1 interval with Xi+1 has size 4BQi + ξi+1. Hence, the
proof follows by induction.

�

Let (b
(i,l)
n ) be the near-alternating subsequences of (d

(i)
n ) obtained in Propo-

sition 4.10; n indexes within each individual sequence, and l indexes the

sequences themselves. Let l index them so that b
(i,l)
1 always comes before

b
(i,l+1)
1 as elements of (cn).

Definition 4.11. Let ind(b
(i,l)
1 ) denote the index of b

(i,l)
1 as an element of

(cn).

We have the following control on the first elements of the near-alternating
sequences.
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Proposition 4.12. For all l, and for i > 5,

ind(b
(i,l)
1 ) ≥

⌊ l

4BQi−4 + ξi−3

⌋
Qi−3

and

ind(b
(i,l)
1 ) ≥ (4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2
.

Remark 4.13. The first bound is stronger for large l; the second bound’s
purpose is to give a nontrivial lower bound when l < 4BQi−4 + ξi−3.

Proof. For the first bound, we have the following argument. Examining

the proof of Proposition 4.10, we see that the terms of (b
(i,l)
n ) have indices

in Xi−3, i.e. among those indices which have not been used for (d
(j)
n ) for

1 ≤ j ≤ i − 3. As noted in that proof, the intersection of Xi−3 with each
length Qi−3 interval has size 4BQi−4 +ξi−3. Therefore, the lth index in Xi−3

is at least b l
4BQi−4+ξi−3

cQi−3.

For the second bound, we note that in Proposition 4.10 the first

(4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2

+1’s and −1’s have been removed from cn at the i− 1st step of the process,

leaving behind Xi−1. The terms of (b
(i,l)
n ) are drawn from Xi−1, hence the

index of any remaining term has this lower bound. �

Now that we have carefully extracted our near-alternating sequences from
(cn) and carefully bounded the number of such sequences and the index of
the first terms, we prove two lemmas on the growth rate of these quantities.
These will simplify our convergence estimates in the next subsection.

Lemma 4.14. Fix α. There exists a constant E (uniform in i > 2) such
that

(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi
2

≤ EQi−2qi.

Proof. It is easy to check that

(4BQi−2 + ξi−1)qi − 4BQi−1 − ξi
2

1

Qi−2qi

is uniformly bounded in i, since Qi−2qi grows at least as fast as the first
term. �

Lemma 4.15. Fix α. There exists a constant F (uniform in i > 5) such
that

ind(b
(i,l)
1 ) ≥ Fqi−3l

for all l.
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Proof. For 1 ≤ l ≤ 4BQi−4 + ξi−3, we use Proposition 4.12:

ind(b
(i,l)
1 ) ≥ (4BQi−3 + ξi−2)qi−1 − 4BQi−2 − ξi−1

2

≥ 4BQi−3qi−1 − 4BQi−2 − ξi−1

2
≥ BQi−3qi−1 −BQi−2

= BQi−3(qi−1 − qi−2)

≥ BQi−3

Note that Qi−3 = qi−3Qi−4 ≥ 1
2qi−3Qi−4 + qi−3 ≥ 1

2qi−3Qi−4 + ξi−3qi−3 ≥
qi−3

4BQi−4+ξi−3

8B , so

ind(b
(i,l)
1 ) ≥ Bqi−3(4BQi−4 + ξi−3)/(8B)

≥ 1

8
qi−3l

as desired.
For l ≥ 4BQi−4 + ξi−3, again by Proposition 4.12

ind(b
(i,l)
1 ) ≥

⌊ l

4BQi−4 + ξi−3

⌋
Qi−3

≥ l

16BQi−4
Qi−3

=
1

16B
lqi−3.

Taking F = 1
16B finishes the proof. �

4.3. Proof of Theorem 3. We need the following pair of straightforward
lemmas on sums involving near-alternating series and decompositions of
series:

Lemma 4.16. Let (βn) be a decreasing sequence, with |βn| → 0, and such
that exactly one of {β2n−1, β2n} is positive for each integer n. Then

∑
n βn

converges and

∣∣∣ ∞∑
n=1

βn

∣∣∣ ≤ |β1|.

Furthermore, for any interval [a, b],∣∣∣ ∑
n∈[a,b]

βn

∣∣∣ ≤ 2|β1|.

Proof. It is easy to verify that the sign pattern giving the largest value of
the full sum is (−1)n+1 and the pattern giving the smallest value is (−1)n.
The first statement is then a standard fact about alternating series.
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The second statement follows from the first, after noting that it is possible
that the a and a+ 1st terms of βn may have the same sign. �

Remark 4.17. The proof actually gives∣∣∣ ∑
n∈[a,b]

βn

∣∣∣ ≤ 2|βa|

but we don’t need this below.

Lemma 4.18. Suppose that we have a decomposition of a sequence (γn) =

ti(δ(i)
n ) satisfying:

• For all i,
∑

n δ
(i)
n converges.

• For all i, there exist D(i) such that |
∑

n∈[a,b] δ
(i)
n | ≤ D(i) for all [a, b],

and
∑

iD
(i) <∞.

Then
∑

n γn converges.

Proof. We prove convergence by the Cauchy Criterion. Let ε > 0 be given.
For each i ∈ N, let Xi be the set of indices of the terms from (γn) that are in

(δ
(i)
n ). Let I ∈ N be such that

∑
i>I D

(i) < ε/2. For each i ≤ I, let Ni ∈ N
be such that for any m1,m2 ≥ Ni the terms of (δ

(i)
n ) whose indices ind(δ

(i)
n )

as elements of the original sequence (γn) lie in [m1,m2] satisfy∣∣∣ ∑
n:ind(δ

(i)
n )∈[m1,m2]

δ(i)
n

∣∣∣ =
∣∣∣ ∑

[m1,m2]∩Xi

δn

∣∣∣ < ε

2i+1
.

Let N = max
i≤I
{Ni}. Then, for any m1,m2 ≥ N ,

∣∣∣ ∑
n∈[m1,m2]

γn

∣∣∣ =
∣∣∣ I∑
i=1

∑
[m1,m2]∩Xi

δn +
∑
i>I

∑
[m1,m2]∩Xi

δn

∣∣∣
≤

I∑
i=1

∣∣∣ ∑
[m1,m2]∩Xi

δn

∣∣∣+
∑
i>I

∣∣∣ ∑
[m1,m2]∩Xi

δn

∣∣∣
≤ ε

2
+
∑
i>I

D(i)

≤ ε.
�

We are now ready to complete our proof of Theorem 3.

Proof of Theorem 3. First, we specify how to choose a Liouville number
which will prove the convergence behavior we want using the continued frac-
tion expansion.

It is standard that
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(3) ‖qkα‖ <
1

qk+1
.

Now suppose that we define α by choosing ak+1 = qk−1
k . Note that as qk is

defined only in terms of a1, . . . , ak, this defines α inductively. In addition, we
can take up this inductive definition after any initial sequence [a1a2 . . . an],
producing a dense set of α. Then,

qk+1 = ak+1qk + qk−1 ≥ qkk .

With (3), this implies that for all k,

‖qkα‖ <
1

qkk
.

Thus, for any v ≥ 1, all pk
qk

with k ≥ v satisfy the approximation condition

in the definition of a Liouville number, so α is Liouville.
On the other hand,

(4) qk+1 ≤ 2qkk and so qk ≤ 2k
2−2k+2q

(k−1)(k−2)(k−3)
k−3

at least for k > 3.
Finally recall the further standard fact ([17, Thm 12]) that the qk grow

exponentially fast for any α:

(5) qk ≥ Cϕk for some C > 0 and ϕ > 1.

Defining α this way gives the following facts. By equation (4),

(k − 1) log qk
qk−3

≤
((k − 1) log 2k

2−2k+2q
(k−1)(k−2)(k−3)
k−3

qk−3

(6)

=
(k − 1)(k2 − 2k + 2) log 2 + (k − 1)2(k − 2)(k − 3) log qk−3

qk−3
.

Clearly
∑

k
(k−1)(k2−2k+2) log 2

qk−3
converges by equation (5). For the second

summand, note that q3 > 3 and that log x
x is decreasing for x ≥ 3. Therefore,

again using equation (5),
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∞∑
k=3

(k − 1)2(k − 2)(k − 3) log qk−3

qk−3
=

∞∑
k=0

(k + 2)2(k + 1)k log qk
qk

(7)

≤ 18 log q1

q1
+

96 log q2

q2
+

∞∑
k=3

(k + 2)2(k + 1)k logCϕk

Cϕk

=
18 log q1

q1
+

96 log q2

q2

+
∞∑
k=3

(k + 2)2(k + 1)k logC

Cϕk
+

(k + 2)2(k + 1)k2 logϕ

Cϕk
,

which converges. This estimate will be key below.

We now use the decomposition from Proposition 4.10 to decompose the

sequence (γn) = (f ◦Tn(0)/n) into subsequences (δ
(i)
n ). Using the decompo-

sition (cn) = ti(d(i)
n ) and the associated index function, let δ

(i)
n = γ

ind(d
(i)
n )

and β
(i,l)
n = γ

ind(b
(i,l)
n )

. Then the decompositions (γn) = ti(δ(i)
n ) and (δ

(i)
n ) =

tl(β
(i,l)
n ) also satisfy Propositions 4.10 and 4.12.

To prove convergence using the mechanism of Lemma 4.18, we need only
obtain estimates for i sufficiently large, so we restrict our attention to i > 5.

Then, using Lemma 4.14 the sequence (δ
(i)
n ) consists of at most EQi−2qi

near-alternating sequences (β
(i,l)
n ). As before, they are indexed so that

β
(i,l)
1 always comes before β

(i,l+1)
1 as elements of (γn). The individual se-

ries
∑

n β
(i,l)
n converge by Lemma 4.16, with

|
∑
n∈[a,b]

β(i,l)
n | ≤ 2|β(i,l)

1 |.

Using Lemma 4.15

|β(i,l)
1 | ≤ 1

Fqi−3l
.

Applying these bounds and Lemma 4.16, we get a bound on partial sums

of δ
(i)
n as follows: for any interval [a, b],

|
∑
n∈[a,b]

δ(i)
n | ≤ 2

EQi−2qi∑
l=1

|β(i,l)
1 |

≤ 2

EQi−2qi∑
l=1

1

Fqi−3l
.

This can be bounded above by
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2

Fqi−3
(1 + log(EQi−2qi)) ≤

2

Fqi−3
(1 + log(Eqi−1

i ))

=
2

Fqi−3
(1 + logE + (i− 1) log qi).

By the exponential growth of qi,
∑

i
1
qi
<∞. We established using equa-

tions (6) and (7) above that
∑

i
(i−1) log qi

qi−3
<∞.

We then have that
∑∞

i=1

∣∣∣D(i)
∣∣∣ converges. By Lemma 4.18, this implies

that
∣∣∣∑∞n=1 γn

∣∣∣ converges, establishing the theorem.

�

Of course, the proof of Theorem 3 presented here allows many other
constructions of Liouville numbers for which the EHT for functions of the
type we are considering will converge. Examining the proof above, we see

that a sufficient condition for convergence is having (k−1) log qk
qk−3

summable.

This leaves plenty of leeway to choose ak sufficiently large to produce a
Liouville number.

4.4. An alternate proof of Theorem 2. As we remarked in the introduc-
tion, the technology which we have developed to prove Theorem 3 provides
an alternate way to prove Theorem 2 which utilizes only standard results
about the continued fraction expansion. To adapt the proof of Theorem 3
it is sufficient to replace the bound on qk+1 which appears in equation (4)
by qk+1 < qvk for all k, which is satisfied for some v > 1 whenever α is not
Liouville. The subsequent calculations in the proof of Theorem 3 need to

be adjusted accordingly, but summability of (k−1) log qk
qk−3

follows in much the

same fashion.
t

5. Some questions

We collect here some questions related to the work above. These were
suggested to us by an unnamed referee.

Question 1. Does Theorem 1 hold for f = χU − m(U) when U is a finite
union of intervals but m(U) 6∈ Q?

Question 2. The α produced via Theorem 1 form a dense set. Can one say
more about the size of the set of α that satisfy this theorem? For instance,
do they form a residual set, as do the corresponding α in Theorem 2.1 of
[10]?

Question 3. Fix two mean-zero indicator functions f1 and f2 for finite unions
of intervals. Is there a (necessarily Liouville) number α for which the EHT of
f1 diverges at some (or all) points, but the EHT of f2 converges at all points?
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Corollary 3.3 suggests one might first investigate the situation where f2 is
the mean-zero indicator for a union of a larger number of disjoint intervals
than f1.

Question 4. Let α be a Liouville number such that the EHT of a mean-zero
indicator function f for a finite union of intervals does not converge at some
point. Can it converge at some other point? What can be said about the
size of the set of non-convergence? Note that such α could not be among
those constructed by Theorems 1 or 3.
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